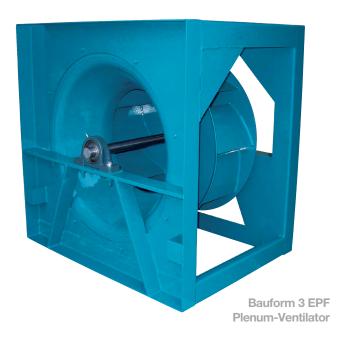
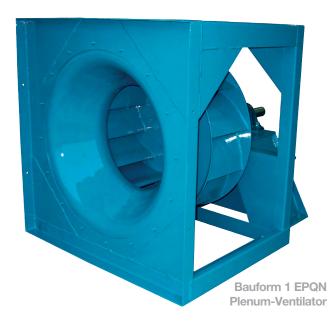



INDUSTRIELLER PROZESS UND KOMMERZIELLE LÜFTUNGSSYSTEME


# EINBAU-PLENUM-VENTILATOREN E-SERIE


EPF | EPFN | EPQ | EPQN





# EINBAU-PLENUM VENTILATOREN







Twin City Fan & Blower bestätigt hiermit, dass die hier beschriebenen Plenum-Ventilatoren der Modelle EPF, EPFN, EPQ & EPQN lizenziert sind, das AMCA-Zeichen zu tragen. Die dargestellten Nennleistungen basieren auf den Tests und Verfahren, die gemäß AMCA-Veröffentlichung 211 und AMCA-Veröffentlichung 311 durchgeführt wurden und die Anforderungen des AMCA-zertifizierten Bewertungsprogramms erfüllen.

Siehe Katalog 475 für die Schallleistungspegel.

# **E-Serie**EPF | EPFN | EPQ | EPQN

Als weltweit größter Lieferant von Einbau-Plenum-Ventilatoren bietet Twin City Fan & Blower mit der komplett neu konstruierten E-Serie nun den ersten Einbau-Plenum-Ventilator, der für Schall- und Luftleistung von der AMCA zugelassen ist, in Bauweisen der Bauform 1 und 3 an.

Die E-Serie bietet die Flexibilität von zwei Einbau-Plenum-Ventilator-Ausführungen, wobei jedes Modell seine eigenen einzigartigen Leistungseigenschaften bietet. Alle Ventilatoren der E-Serie sind hocheffizient und leise und Sie können eine Ausführungsoption auswählen, welche die Leistungsanforderungen die für Ihre Anwendung am wichtigsten sind, optimiert, auswählen.

#### **Vorteile eines Einbau-Plenum-Ventilators**

Platzsparend – Es gibt keine Gehäuse, Übergänge oder Diffusoren innerhalb der Lüftungsanlage.

Effizienz – Einbau-Plenum-Ventilatoren können an bestimmten Betriebspunkten im unteren Bereich der Ventilator-Kennlinie genauso effizient wie oder noch effizienter als Ventilatoren mit Spiralgehäuse sein.

Geringere Kosten – Einbau-Plenum-Ventilatoren sind preiswerter als viele Ventilatoren mit Spiralgehäuse.

### Kompakte Bauweisen mit Leistungsgarantie

Da Platz bei der Auswahl von Einbau-Plenum-Ventilatoren häufig eine entscheidende Rolle spielt ist die kompakte Bauweise der Bauform 3 besonders beliebt.

Bei Bauweise der Bauform 3 ist ein Lager und ein Tragstab im Eingang verbaut, was sich auf die Ventilatorleistung auswirkt. Diese Leistungseinschränkung sollte berücksichtigt werden, um sicherzustellen, dass Ihr System auslegungsgemäß funktioniert.

Einbau-Plenum-Ventilatoren sind Ventilatoren ohne Gehäuse, die für einen Betrieb in bauseits hergestellten oder fabrikfertigen Lüftungsanlagen ausgelegt sind.

#### **Anwendung**

Das Ventilatorlaufrad setzt das gesamte Plenum, in dem der Ventilator installiert ist, unter Druck und ermöglicht so den direkten Anschluss von Luftkanälen aus allen Richtungen an die Lüftungsanlage. Dieses Design spart in der Regel Platz, da innerhalb der Lüftungsanlage kein Ventilatorgehäuse, keine Übergänge und keine Diffusoren benötigt werden.

Einbau-Plenum-Ventilatoren haben sich in der Lüftungsindustrie durchgesetzt. Die flexible Bauweise, die Anpassbarkeit der Richtung der Ausblasöffnungen, die Eignung für eine interne Isolierung sowie der Einsatz von Schalldämpfern und die allgemein niedrigeren Kosten tragen außerdem zur Beliebtheit dieser Ventilatorbauform bei.

# Laufräder mit 9 Schaufeln

### **EPF (Bauform 3)**

Das Modell EPF bietet eine hocheffiziente und kosteneffektive Laufradausführung mit 9 aerodynamisch geformten Hohlschaufeln. Die hohe Effizienz des Modells EPF ermöglicht in vielen Fällen den Einsatz kleinerer Ventilatoren, ohne dass sich dadurch der Energiebedarf erhöht. Das Modell EPF ist eine Ausführung der Bauform 3.

### EPFN (Bauform 1 und 4)

Das Modell EPFN bietet die gleichen hocheffiziente Laufradausführung mit 9 aerodynamisch geformten Hohlschaufeln wie das Modell EPF, ist jedoch in Ausführungen der Bauform 1 oder 4 ohne Eingangsbehinderungen erhältlich

#### Größen

Laufraddurchmesser 315 mm bis 1850 mm

#### Leistung

Luftstrom von 0,5 bis 80 m<sup>3</sup>/s Statischer Druck bis 2500 Pa

#### Antriebskonfigurationen

Verfügbar bei direkt- und riemengetriebenen Antriebskonfigurationen.

#### **Optionale Bauweise**

Klasse I, II, & III



EPF/EPFN
Laufrad mit 9 Schaufeln

# Laufräder mit 12 Schaufeln

#### **EPQ** (Bauform 3)

Das Modell EPQ mit besserer Schallqualität verfügt über eine Laufradausführung mit 12 aerodynamisch geformten Hohlschaufeln, welche das Schallspektrum abflacht und die Dominanz von reinen Tönen reduziert. Das Modell EPQ ist eine Ausführung der Bauform 3.

#### EPQN (Bauform 1 und 4)

Das Modell EPQN bietet die gleiche verbesserte Schallqualität und Laufradausführung mit 12 aerodynamisch geformten Hohlschaufeln wie das Modell EPQ, ist jedoch in Bauform 1 oder 4 ohne Eingangsbehinderungen erhältlich

#### Größen

Laufraddurchmesser 315 mm bis 1850 mm

#### Leistung

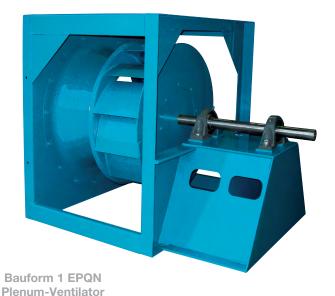
Luftstrom von 0,5 bis 80 m<sup>3</sup>/s Statischer Druck bis 3000 Pa

#### **Antriebskonfigurationen**

Verfügbar bei direkt- und riemengetriebenen Antriebskonfigurationen.

#### **Optionale Bauweise**

Klasse I, II, & III




EPQ/EPQN Laufrad mit 12 Schaufeln



# EPQ/EPQN VORTEIL





Die Einbau-Plenum-Ventilatoren EPQ/EPQN bieten einzigartige Leistungsmerkmale, die für viele geräuschempfindliche und Hochdruckanwendungen von Vorteil sind.

Die Modelle EPQ/EPQN verfügen über ein Laufrad mit zwölf aerodynamisch geformten Hohlschaufeln im Gegensatz zu unseren Einbau-Plenum-Ventilatoren mit einem Laufrad mit neun Schaufeln oder Laufrädern mit acht bis zehn Schaufeln bei den meisten Konkurrenzprodukten. Das "Q" in den EPQ/EPQN-Bezeichnungsstandards steht für bessere Geräuschqualität. Geräuschqualität ist eine subjektive Beschreibung für Geräusch, das weniger störend ist.

Bei Betrachtung des Schallvergleichs wird Ihnen auffallen, dass die Modell vom Typ EPQ/EPQN einen Schalldruckpegel (SPL) bieten, der gleichmäßiger über alle Frequenzen verteilt ist. Dies kann für das Gehör angenehmer sein als die Schalleigenschaften einer Ausführung mit neun Schaufeln. Die Ventilatoren werden hinsichtlich ihres Geräuschpegels häufig durch das bei der Drehfrequenz entstehende Geräusch dominiert. (Drehfrequenz = U/min x Schaufelanzahl/60.) Die Geräuschqualität wird durch Reduktion der Differenz zwischen den Drehamplituden und den benachbarten Frequenzamplituden verbessert. Die erhöhten Schallleistungspegel mit höherer Freguenz bei Laufrädern mit zwölf Schaufeln maskieren die Drehfrequenz und bieten so eine bessere Schallqualität. Auch wenn die A-bewerteten Schallleistungspegel der EPF/EPFN-Ventilatoren mit neun Schaufeln geringfügig niedriger sind, kann die Schallqualität der EPQ/EPQN-Ventilatoren mit zwölf Schaufeln vielleicht für die Anwendung wünschenswert sein.

Eine höhere Drehfrequenz ermöglicht eine einfachere Dämpfung des Geräusches, insbesondere bei Installation in einer Lüftungsanlage. In vielen Anwendungen reduziert sich durch Einsatz der EPQ/EPQN-Ausführung die Drehfrequenz von der 125 Hz-Oktavfrequenz auf das 250 Hz-Band. Die Leistung von Schalldämpfern verbessert sich in der Regel im 250 Hz-Band um 10 dB.

Neben schalltechnischen Vorteilen bietet der Einsatz der EPQ/EPQN-Ausführungen bei hohen Druckwerten zusätzliche Vorteile. Bei Einstellung des statischen Drucks auf über 2000 Pa wird oftmals der maximale Druckbereich des Ventilators erreicht. Die zusätzlichen Schaufeln bieten einen höheren Maximaldruck und geben dem Ventilator außerdem zusätzliche Stabilität. Zwölf kleinere Durchgänge durch das Ventiltorlaufrad sind widerstandsfähiger gegenüber Strömungsstörungen am Eingang als neun größere Durchgänge. Das Modell EPQ/EPQN ist daher widerstandsfähiger gegenüber Systemauswirkungen beim Betrieb bei hohen Druckwerten und den höheren Eingangsgeschwindigkeiten, die mit diesen Einstellungen einher gehen.

| TVD                 | M³/s | Pa   | LL/Baini | DLW   |     |     |     | FREQUI | ENZ, HZ |      |      |      | Lund |
|---------------------|------|------|----------|-------|-----|-----|-----|--------|---------|------|------|------|------|
| ТҮР                 |      | Pa   | U/MIN    | BkW   | 663 | 125 | 250 | 500    | 1000    | 2000 | 4000 | 8000 | LwA  |
| EPQN - 12 Schaufeln | 9,44 | 7,46 | 977      | 10,07 | 86  | 89  | 90  | 83     | 81      | 77   | 69   | 64   | 87   |
| EPFN - 9 Schaufeln  | 9,44 | 7,46 | 967      | 9,63  | 89  | 94) | 87  | 79     | 80      | 74   | 67   | 63   | 85   |

HINWEIS: Die eingekreisten Zahlen bezeichnen die Drehfrequenz.

#### Laufräder

Alle Größen und Bauformen sind mit hocheffizienten, überlastgeschützten Hohlprofil-Laufräder ausgestattet.

**Bauform 1 und 3** – Aluminium-Laufräder mit Aluminium-Strangpress-Schaufeln sind bis Größe 245 bei Ventilatoren der Bauform 1 und 3 Standard bei größeren Größen als Option verfügbar. Ab Größe 270 sind Stahllaufräder Standard.

**Bauform 4** – Aluminium-Laufräder mit Aluminium-Strangpress-Schaufeln sind bis Größe 600 bei Ventilatoren mit Direktantrieb der Bauform 4 Standard und eine beliebte Wahl für Anwendungen, die eine präzise Auswuchtung und verbesserte Zuverlässigkeit erfordern.

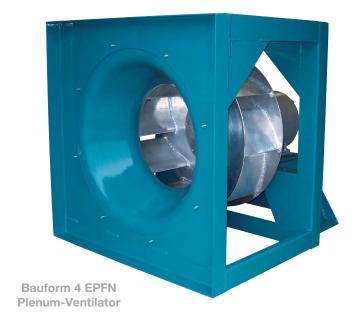
#### Einströmdüsen

Die soliden, gedrückten, Stahl-Einströmdüsen sind genau auf die Raddecke des Laufrads abgestimmt und gewährleisten so einen effizienten und leisen Betrieb.

#### Struktureller Rahmen

Die Rahmen sind aus solidem Stahl gefertigt und allen Verbindungsstellen durchgehend verschweißt für maximale Stabilität und Festigkeit. Die kreuzförmige Lagerstütze ist auf maximale Stabilität und Lastverteilung ausgelegt.

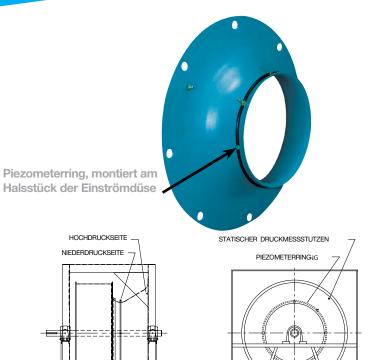
#### Welle


Die Wellen sind warmgewalzte Stahlerzeugnisse der AlSl-Güteklasse 1040 oder 1045 und akkurat gedreht, geschliffen, poliert und mit Messringen justiert, um ein erhöhtes Maß an Genauigkeit zu erzielen. Die Größe der Wellen ist großzügig ausgelegt, um eine erste kritische Drehzahl von mindestens 1,43 Mal der maximalen Drehzahl für diese Klasse zu erreichen.

### Ventilatorlager

Die Lager sind schwerlastfähig, mit Schmiermittel geschmiert, Tonnenlager oder am Adapter montierte Walzlager, selbstanpassend, Typ Lagerblock, ausgewählt für eine minimale durchschnittliche Lebensdauer der Lager L-10 von über 40.000 Stunden bei der maximalen Drehzahl der Ventilatoren. in Anbetracht der langen Lebensdauer, die unsere Standard-Lagerauswahlen bieten, raten wir von einer Aufrüstung auf geteilte Rollenlager aufgrund ihrer großen Größe ab, insbesondere bei Ventilatoren der Bauform 3.

### Eingangskragen


Bei horizontalen Konfigurationen ist ein flexibler Anschluss an den Umfang der quadratischen Platte, ohne Einsatz eines Eingangskragen, vorgesehen.







#### LUFTSTROM-MESSSYSTEM



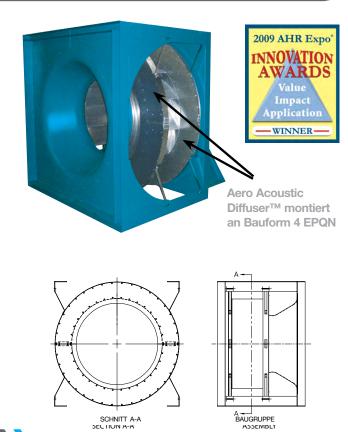
### **Piezometerring**

### (Luftstrom-Messsystem)

Ein Piezometerring steht auf den Einbau-Plenum-Ventilatoren sowie auf anderen Gehäuse-Ventilatoren von Twin City

Fan zur Verfügung, als Bestandteil eines Luftstrom-Messsystems und basierend auf der Grundlage einer Strömungsdüse. Die Einströmdüse des Ventilators wird als Strömungsdüse verwendet. Der Strom kann durch Messung des Druckabfalls durch die Einströmdüse berechnet werden. In den Hochgeschwindigkeitsluftstrom werden keine Schläuche oder Sensoren eingeführt, die den Luftstrom behindern könnten.

Das System besteht aus einem Piezometerring, der am Halsstück montiert wird, sowie aus einer Druckentnahmestelle für den statischen Druck, die auf der Oberfläche der Einströmdüse angebracht ist. Ein Differenzdruckaufnehmer und eine Digitalanzeige sind ebenfalls erhältlich.


Der Druckabfall wird von der Druckentnahmestelle auf der Oberfläche der Einströmdüse an den Piezometerring im Halsstück aus gemessen. Die Eintrittsdruckentnahmestelle ist mit der Hochdruckseite des Aufnehmers verbunden, und der Piezometerring ist an der Niederdruckseite angeschlossen. Siehe Diagramm rechts.

Im Rahmen der von Twin City Fan durchgeführten Labortests wurde festgestellt, dass das System akkurat innerhalb von +/-5 % liegt.

Siehe Technikbeilageheft von Twin City Fan, Engineering Supplement ES-105.

HINWEIS: Twin City Fan rät davon ab, die Strömungsmesssonden im Innern der Einströmdüse des Ventilators im Pfad des Luftstroms zu montieren. Diese Geräte verursachen Störungen und unberechenbare Leistungsverluste. Twin City Fan übernimmt keinerlei Verantwortung für Leistungsverluste aufgrund solcher Geräte.

# AERO ACOUSTIC DIFFUSER (U.S. PATENT 8025477)



Der neue Aero Acoustic Diffuser™ ist exklusiv an Einbau-Plenum-Ventilatoren der E-Serie von Twin City Fan erhältlich. Das patentierte Design ermöglicht eine Reduktion des Schallleistungspegels des Einbau-Plenum-Ventilators um bis zu 3 dBA bei einer gleichzeitigen Erhöhung der aerodynamischen statischen Effizienz um 4%.

Der Aero Acoustic Diffuser<sup>TM</sup> bietet eine vollständig verzinkte Bauweise und wird an der Vorder- und Rückseite des Ventilatorlaufrads montiert. Das akustische Material ist in einem soliden Gehäuse mit einer perforierten Frontplatte untergebracht, die den Luftstrom über den Diffuser leitet und so das Ventilatorgeräusch reduziert und die statische Effizienz erhöht.

Die aus verzinktem Stahl gefertigten Befestigungsaufhängungen werden direkt am Rahmen angebracht und ermöglichen so eine Montage innerhalb des bestehenden Ventilatorrahmens.

Der Aero Acoustic Diffuser™ ist für alle Größen von Einbau-Plenum-Ventilatoren der E-Serie, mit Direktantrieb oder Riemenantrieb, erhältlich. Der Diffuser kann entweder direkt ab Werk an den Ventilatoren angebracht werden oder als Nachrüstsatz an vorhandene Ventilatoren angebaut werden.

# PRODUKT ZUBEHÖR

#### **Drallregler**

Drallregler bieten eine ökonomische, stabile und effiziente Luftvolumensteuerung für den manuellen und motorisierten Betrieb. Die Schaufeln sind auf ermüdungsbeständigen Stahlwellen und zwei Nadellagern, die zur Verschleißminderung auf zonengehärteten Oberflächen gleiten, gelagert. Die Lager sind mit einem hochwertigen feuchtigkeitsbeständigen Schmiermittel auf Lebensdauer geschmiert und mit Lippendichtungen geschützt. Die Schaufellagergehäuse sind aufgeschweißt und mit einem geschweißten Tragring versteift. Die geschweißte Konstruktion verhindert Flattern und Schwingungen und verwendet ein ausgekragtes Design, um die Einfügungsdämpfung zu minimieren.

HINWEIS: Drallregler werden bei Ventilatoren kleiner als Größe 200 aufgrund des Geräuschpegels und des Leistungsverlusts nicht empfohlen.

#### Eingangskragen

Das Standarddesign mit einer quadratischen Platte verfügt über entsprechende Vorrichtungen zum Anschluss an alle Bauformen ohne Eingangskragen.

### Riemenabdeckung

Schützt die Mitarbeiter vor den sich bewegenden Antriebsteilen. Es stehen sowohl standardmäßige als auch OSHAkonforme, voll umschlossene Typen zur Verfügung.

#### **Abdeckung**

Die Gitter-Abdeckung umschließt alle Seiten sowie die Rückseite des Ventilatorlaufrads vollständig. Die seitlichen Abdeckungsteile können einzeln abgenommen werden, um Zugang zum Laufrad zu erhalten.

#### **Eintrittsgitter**

Das solide Eintrittsgitter ists im Eingangstrichter installiert und dient zum Schutz der Mitarbeiter bei Eingängen ohne Leitungskanäle.



Optionale Riemenabdeckung & Abdeckung



**Eintrittsgitter** 

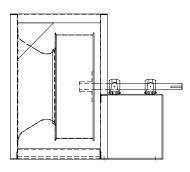


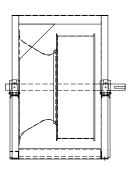


Eingangskragen

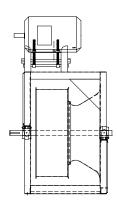
# BAUFORMEN

#### **Bauform 1 (EPFN und EPQN)**


Bauform 1 verfügt über eine fliegend gelagerte Laufradausführung, die für Keilriemenantriebe geeignet ist und erfordert eine vom Ventilator unabhängige Motormontage.


- Klasse I und II verfügbar in Größen 122 bis 890. Siehe Maßzeichnung auf Seite 93.
- Klasse III verfügbar in Größen 182 bis 890. Die Maßzeichnung erhalten Sie vom Hersteller.

#### Bauform 3 (Horizontal - EPF und EPQ)


Diese Einbau-Plenum-Ventilator-Bauform kommt in OEM- und bauseits hergestellten Lüftungsanlagen am häufigsten zum Einsatz. Bauform 3 ist für Keilriemenantriebe geeignet ist und erfordert eine vom Ventilator unabhängige Motormontage. Twin City Fan & Blower bietet gemeinsame einheitliche Sockel und Isolationsbasen für den Ventilator und Motor als Zubehör.

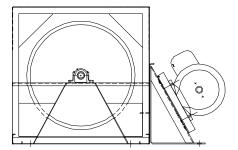
Klasse I und II verfügbar in Größen 122 bis 890. Klasse III verfügbar in Größen 182 bis 890. Siehe Maßzeichnung auf Seite 94.





# BAUFORMEN



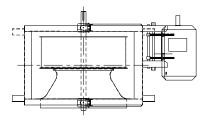

**Bauform 3HA** 

### Bauform 3HA (Horizontal mit an der Oberseite montiertem Motor)

Bauform 3HA bietet eine Vorrichtung zur Montage des Motors an der Oberseite der Einheit. Diese Ausführung ist oft von Vorteil bei einer begrenzten Aufstellfläche.

Erhältlich mit einem schwerlastfähigen, von Twin City Fan & Blower konstruiertem "verstellbaren Motorsockel" für alle Ventilatorgrößen.

- Modelle EPF und EPQ.
- Bauform 3HA mit drehbarem Motorsockel ist in Klasse I und II für die Größen 122 bis 542 erhältlich. Siehe Maßzeichnung auf Seite 96-97.




#### **Bauform 3SM**

## (Horizontal mit an der Seite montiertem Motor)

Bauform 3SM ist darauf ausgelegt, ein ökonomisches und platzsparendes Mittel zur Versorgung von Einbau-Plenum-Ventilatoren mit an der Seite des Ventilatorrahmens montiertem Motor zu bieten. Ein Motorspannschlitten ermöglicht schnelle und einfache Riemenanpassungen.

- Modelle EPF und EPQ.
- Klasse I und II verfügbar in Größen 165 bis 600. Die Zeichnung zeigt einen auf eine maximale Rahmengröße begrenzten Motor. Siehe Maßzeichnung auf Seite 95.



Bauform 3VA

Dargestellt mit optionalem Eingangskragen

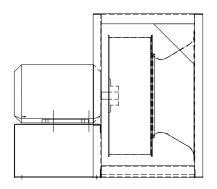
### **Bauform 3VA**

### (Vertikal mit an der Seite montiertem Motor)

Die vertikale Bauform 3 ist mit einem schwerlastfähigen, von Twin City Fan & Blower konstruiertem "verstellbaren Motorsockel" für alle Ventilatorgrößen erhältlich.

- Modelle EPF und EPQ.
- Bauform 3VA mit drehbarem Motorsockel ist in Klasse I und II für die Größen 122 bis 542 erhältlich. Siehe Maßzeichnung auf Seite 98-99.
- Sofern nicht anders angegeben, werden die Einheiten für einen vertikalen Luftstrom in Aufwärtsrichtung gebaut.

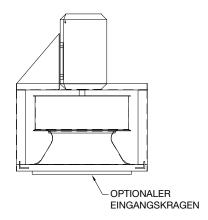
## BAUFORMEN


#### **Bauform 4 (Horizontal)**

Bei Bauform 4 mit Direktantrieb ist der Ventilator direkt an der Motorwelle montiert. Diese Bauform bietet eine kompakte Ventilator-/Motoreinheit, bei der es zu keinen Riemenrückständen kommt und die einen geringeren Wartungsbedarf als andere Bauformen hat. Sie schließt außerdem Antriebsverluste aus und bietet damit eine energieeffiziente Lösung.

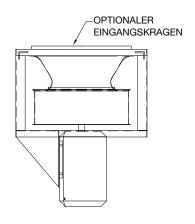
Aus diesen Gründen sind Einbau-Plenum-Ventilatoren der Bauform 4 in Reinraumanwendungen, pharmazeutischen Anwendungen und anderen kritischen Anwendungen weit verbreitet.

Die Ventilatoren können mit verschiedenen Laufradbreiten ausgewählt werden, um die gewünschte Leistung bei Motordrehzahlen mit Direktantrieb zu bieten. Leistungsänderungen im Feld werden normalerweise mittels Drallreglern oder eines Frequenzumrichters erreicht.


- Modelle EPFN und EPQN.
- Aluminiumlaufräder mit Aluminium-Strangpress-Schaufeln sind Standard.
- Klasse I und II verfügbar in Größen 122 bis 660. Siehe Maßzeichnung auf Seite 100-101.
- Klasse III verfügbar in Größen 182 bis 660. Siehe Maßzeichnung auf Seite 102-103.



#### **Bauform 4 (Vertikal)**


Die vertikale Bauform 4 ist für eine Montage mit vertikalem Luftstrom in Aufwärtsrichtung (Eingang unter dem Motor) oder vertikalem Luftstrom in Abwärtsrichtung (Eingang über dem Motor) verfügbar.

- Modelle EPFN und EPQN.
- Aluminiumlaufräder mit Aluminium-Strangpress-Schaufeln sind Standard.
- Klasse I und II verfügbar in Größen 182 bis 490.
- · Eingangsflansch verfügbar.
- Siehe Maßzeichnung auf Seite 104.



Vertikaler Luftstrom in Aufwärtsrichtung





Vertikaler Luftstrom in Abwärtsrichtung

# VERLUSTE AM KANALEINGANG VOM PLENUM-SCHRANK

Um die Luftgeschwindigkeit im Ablasskanal zu erreichen und den Verlust in Zusammenhang mit der in die Leitungskanäle eintretenden Luft zu kompensieren, muss ein zusätzlicher Widerstand zu den Anforderungen hinsichtlich des externen statischen Drucks (ESP) des Ventilators addiert werden. Verschiedene Arten von Kanaleingängen und -positionen erfordern unterschiedliche Korrekturfaktoren. Daher muss vor Auswahl eines Ventilators folgende Korrektur in Abhängigkeit von der Art des Kanals und dessen Position vorgenommen werden.



**Beispiel:** Ein System benötigt 14,15 m³/s bei einem statischen Druck von 1250 Pa bei einer Standard-Luftdichte mit einem Kanal mit 1250 mm Durchmesser mit einem in einem radialen Ablass befindlichen Ansaugtrichter. Bestimmung des RPM und der aufgenommenen Leistung:

Kanalfläche =  $(1,25^2 \times \Pi) \div 4 = 1,227 \text{ m}^2$ Kanalgeschwindigkeit =  $14,15 \div 1,227 = 11,53 \text{ m/s}$ Kanal dynamischer Druck =  $0,5 \times \rho \times v^2 = 0,6 \times 11,53^2$ 

= 80 Pa bei Standardbedingungen

Korrekturfaktor für Eingangsverlust
= 1,1 x Geschwindigkeitsdruck im Kanal = 1,1 x 80 = 88 Pa

Demnach muss der Lüfter für einen statischen Druck = 1250 + 88
= 1338 Pa ausgewählt werden

### ANWENDUNGS RICHTLINIEN

### Empfehlungen zur Ventilatorauswahl

- Vor der Auswahl des Ventilators sollten die Systemeffizienzverluste (siehe AMCA 201) und Plenumverluste abgeschätzt und zum erforderlichen statischen Druck addiert werden. Siehe AMCA-Veröffentlichung 201 auf www.amca.org und Tech-nisches Datenblatt von Twin City Fan "Fan Performance Troubleshooting Guide" (FE-100) auf www.tcf.com.
- Die Ventilatoren sollten so ausgewählt werden, dass der Betriebspunkt etwa zwischen 55 % und 90 % des freien Förderpunkts auf der Kennlinie des Ventilators liegt.
- Eine Auswahl über 4000 U/min ist zu vermeiden. Ein großes Laufrad mit einer geringen Breite kann verwendet werden, um dies zu vermeiden.
- 4. Die Bauformen 1 und 4 bieten die beste Effizienz und den nierigsten Geräuschpegel, da es keine Eingangsbehinderungen gibt.
- Sofern die Platzverhältnisse es zulassen, sollten der Ventilator und der Motor auf einem Unterbau montiert werden. Der Motor kann bei Bauform 3HS, 3HA, 3SM, 3VS und 3VA auf dem Ventilator montiert werden.
- Für geringste Ventilatorschwingung Trägheits-Basen oder starre Montage verwenden. Bei einer starren Montage ist eine dynamische Analyse der tragenden Struktur (durch Dritte) erforderlich, um Resonanz zu vermeiden.
- Anwendungen mit einem statischen Druck über 2500 Pa neigen zu hohen Systemverlusten. Der Einsatz von Ventilatoren mit Gehäuse (BAE-DWDI) sollte in Betracht gezogen werden.
- Wenn ein statischer Druck über 2000 Pa erforderlich ist, ist Modell EPQ oder EPQN aufgrund der geringeren Betriebsdrehzahlen und der verbesserten Stabilität zu bevorzugen. Der Ventilator sollte so ausgewählt werden, dass der Auslegungsdruck mindestens 10 % unter dem Maximaldruck liegt.
- Wenn eine Durchflussüberwachung erforderlich ist, sollte ein Piezometerring oder eine extern montierte Durchfluss-Messstation verwendet werden. Die Ventilatorleistung kann durch direkt in der Einströmdüse montierte Durchfluss-Messsonden nachhaltig beeinflusst werden. Siehe Seite 6.

- 10. Bei Ventilatoren mit Direktantrieb ohne Drehzahlregelung (oder in Fällen, in denen eine Drehzahlregelung über 50 Hz nicht möglich ist), sollten Ventilatoren mit 3 5 % unter der nominalen Drehzahl des Motors ausgewählt werden. Dies gleicht in der Regel die Unsicherheiten in Verbindung mit den Messwerten des Systems und dem Luftausgleichsvorrichtung aus. Die ausgewählten Motor sollten im belasteten Zustand nicht mehr als 90 % der Maximalbelastung des Motors aufweisen.
- 11. Bei mehreren Ventilatoren in einem Plenum sollten Ventilatoren mit Drehung im Uhrzeigersinn und gegen den Uhrzeigersinn im Wechsel eingesetzt werden, um Verluste zu minimieren. Wenn die Ventilatoren nicht gegenläufig sind, sollten Wände zwischen jedem Ventilator installiert werden zur Bildung von Zellen im Ausgangsplenum.
- 12. Die Verluste für Kanalabzüge gemäß der vorstehenden Tabelle sind zu den Druckanforderungen des Ventilators zu addieren. Eingänge mit Ansaugtrichter sorgen immer für eine Reduktion der Verluste und werden empfohlen.
- 13. Für höchste Zuverlässigkeit ist die erforderliche Lagerlebensdauer anzugeben. So ist es zum Beispiel bei Aussage "mindestens Lagerlebensdauer L10 = 40.000 Stunden" möglich, das beste Lager am Ventilator anzubringen, ohne das dies zu sonstigen Probleme führt. Einige Spezifikationen besagen "geteilte Rollenlager verwenden". Dies kann zu einer Reihe von Problemen führen, wie z.B.:
  - a. Bei kleineren Ventilatoren ist u.U, nicht genügend Radiallast vorhanden, um ein Rutschen der Rollen zu verhindern. Dies ist insbesondere ein Problem bei Ventilatoren der Bauform 3.
  - b. Geteilte Rollenlager werden nicht mit einer Bohrung kleiner als 36 mm angeboten. Kleinere Ventilatoren verwenden Wellen, die kleiner als dieses Maß sind.
  - c. Das übergroße Lager im Elngang blockiert in kleineren Ventilatoren einen Teil der Luft (über die Verluste, die bereits in den EPF/EPQ-Bemessungsdaten berücksichtigt wurden, hinaus).

#### Position und Einbau von Ventilatoren in Lüftungsanlagen

- Die Ventilatoreingänge müssen sowohl horizontal als auch vertikal zentriert werden
- Für Eingangsabstände siehe Abbildung 1. Der Strom sollte bei Annäherung an die Öffnung für den Ventilatoreingang in einem Winkel von höchstens 45° zusammenlaufen. Es wird empfohlen, dass der Abstand mindestens einem Laufraddurchmesser entspricht.
- 3. Im Ausgangsplenum des Ventilators wird ein Mindestabstand zur Wand von einem halben Laufraddurchmesser zum Umfang des Ventilatorlaufrads empfohlen.
- 4. Abbildung 1 zeigt, dass der Mindestabstand zwischen der Rückseite des Ventilatorlaufrads und der nächsten nachgelagerten Komponente (Maß E) einem Laufraddurchmesser entsprechend sollte. Kleine Abstände ermöglichen keinen Ausgleich des Stroms hinter dem Ventilatorlaufrad, wodurch sich der Druck der nachgelagerten Komponente verringert.
- 5. Wenn der Strom im rechten Winkel zur Ventilatorwelle in das Eingangsplenum eintrifft, kann es zu großen Verlusten der Systemeffizienz kommen. Siehe Abbildung 2 für Empfehlungen bezüglich einer Ablenkplatte oder einer Rotationsbremse, die dazu beitragen kann, die Ventilator-Nennleistung zu erhalten.

6. Bei Installation von zwei oder mehreren Ventilatoren in einem Plenum sollte das Plenum in imaginäre Zellen mit gleicher Fläche unterteilt werden. Die Ventilatoreingänge müssen in jeder Zelle zentriert werden. Siehe Abbildung 3.

#### Installationsempfehlungen

- Die Ventilatoren sind so zu installieren, dass der flexible Kompensator am Eingang w\u00e4hrend des Betriebs nicht zusammengedr\u00fcckt wird.
- Zum Erhalt der axialen Position des Lüfters während der Druckerzeugung sind Drucklager (Schwingungsdämpfer) zu installieren.
- 3. Peripheriegeräte wie elektrische Komponenten, Inverter, Bediengeräte etc. sind in ausreichender Entfernung zur mit hoher Geschwindigkeit in den Ventilator eintretenden oder aus diesem austretenden Luft zu installieren.
- 4. Die Federn auf der Isolationsbasis sind so einzustellen, dass der Federweg für alle Dämpfer ungefähr gleich ist.
- 5. Die mit jedem Ventilator gelieferten Sicherheits-, Installations-, Inbetriebnahme- und Wartungshinweise sind zu beachten.

Abbildung 1. Empfohlene Position des Ventilators im Plenum

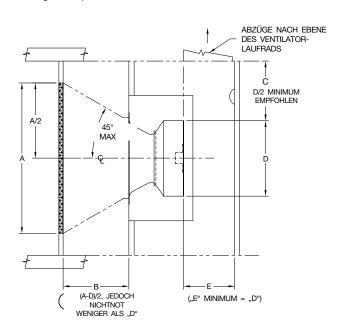
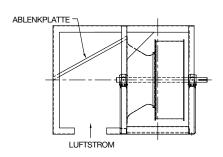




Abbildung 2. Position der Ablenkplatte und Rotationsbremse



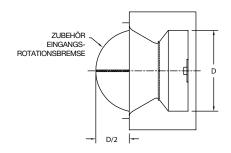
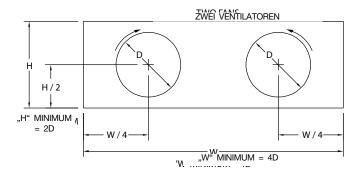
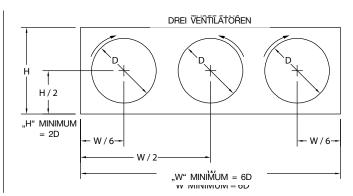





Abbildung 3. Position gegenläufiger Ventilatoren



HINWEIS: "D"= Laufraddurchmesser



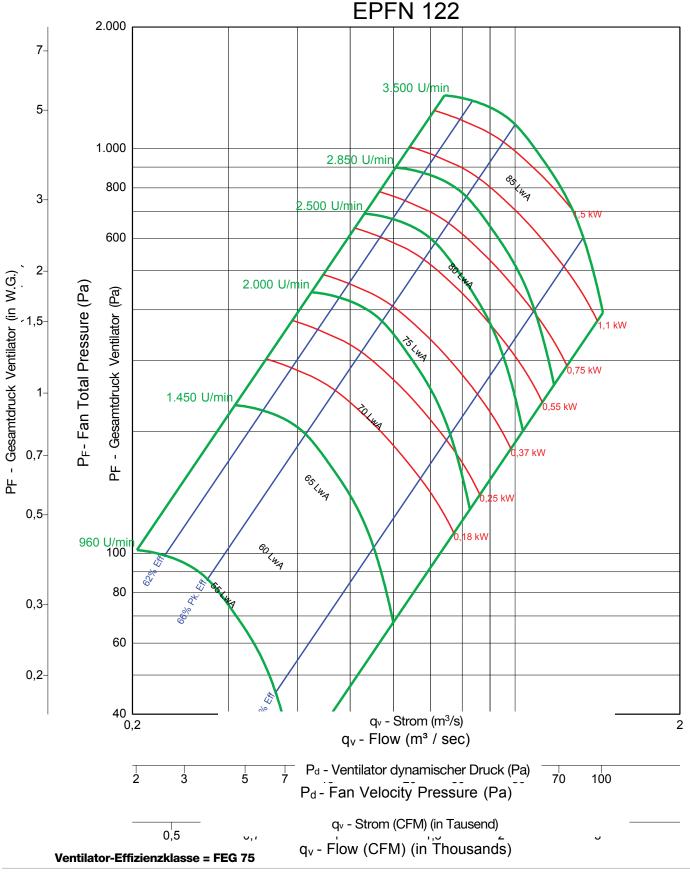
### Maximale Drehzahl, Laufradgewichte und WR<sup>2</sup> - EPF und EPFN

|      | LAUFRAD- KLASSE I |                  |                |                                         |             |                                         |                  | KLASSE II   |                                         |             |                                         |                  |             | KLASSE III                              |             |                                         |  |  |  |
|------|-------------------|------------------|----------------|-----------------------------------------|-------------|-----------------------------------------|------------------|-------------|-----------------------------------------|-------------|-----------------------------------------|------------------|-------------|-----------------------------------------|-------------|-----------------------------------------|--|--|--|
| EPF  |                   |                  | MAX. ALUMINIUM |                                         | STAHL       |                                         | MAX. ALUMINIUM   |             | STAHL                                   |             | MAX.                                    | ALUMINIUM        |             | STAHL                                   |             |                                         |  |  |  |
| EPFN | MESSER<br>(mm)    | U/MIN<br>(20 °C) | WT.<br>(kg)    | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | U/MIN<br>(20 °C) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | U/MIN<br>(20 °C) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) |  |  |  |
| 122  | 315               | 3388             | 4,1            | 0,04                                    | N/A         | N/A                                     | 4000             | 4,1         | 0,04                                    | N/A         | N/A                                     | N/A              | N/A         | N/A                                     | N/A         | N/A                                     |  |  |  |
| 150  | 355               | 3006             | 5,5            | 0,07                                    | N/A         | N/A                                     | 3909             | 5,5         | 0,07                                    | N/A         | N/A                                     | N/A              | N/A         | N/A                                     | N/A         | N/A                                     |  |  |  |
| 165  | 400               | 2668             | 6,8            | 0,12                                    | N/A         | N/A                                     | 3468             | 6,8         | 0,12                                    | N/A         | N/A                                     | N/A              | N/A         | N/A                                     | N/A         | N/A                                     |  |  |  |
| 182  | 464               | 2302             | 7,7            | 0,26                                    | N/A         | N/A                                     | 2930             | 8,2         | 0,26                                    | N/A         | N/A                                     | 3767             | 9,5         | 0,26                                    | N/A         | N/A                                     |  |  |  |
| 200  | 508               | 2101             | 9,5            | 0,27                                    | N/A         | N/A                                     | 2674             | 9,5         | 0,31                                    | N/A         | N/A                                     | 3438             | 10,9        | 0,39                                    | N/A         | N/A                                     |  |  |  |
| 222  | 565               | 1888             | 13,6           | 0,51                                    | N/A         | N/A                                     | 2403             | 13,6        | 0,51                                    | N/A         | N/A                                     | 3090             | 15,5        | 0,63                                    | N/A         | N/A                                     |  |  |  |
| 245  | 622               | 1715             | 15,9           | 0,88                                    | N/A         | N/A                                     | 2183             | 15,9        | 0,88                                    | N/A         | N/A                                     | 2806             | 17,3        | 0,93                                    | N/A         | N/A                                     |  |  |  |
| 270  | 686               | 1556             | 18,2           | 1,2                                     | 38,6        | 3,5                                     | 1981             | 18,2        | 1,2                                     | 44,1        | 3,9                                     | 2546             | 21,4        | 1,3                                     | 59,5        | 5,3                                     |  |  |  |
| 300  | 762               | 1401             | 22,3           | 1,9                                     | 46,8        | 5,1                                     | 1783             | 24,5        | 2,1                                     | 50,5        | 5,4                                     | 2291             | 26,4        | 2,2                                     | 69,5        | 7,5                                     |  |  |  |
| 330  | 838               | 1273             | 28,2           | 2,9                                     | 61,8        | 8,2                                     | 1620             | 30,5        | 3,2                                     | 70,0        | 9,1                                     | 2083             | 32,7        | 3,2                                     | 93,6        | 12,4                                    |  |  |  |
| 365  | 927               | 1151             | 33,2           | 4,3                                     | 71,4        | 11,5                                    | 1465             | 35,9        | 4,7                                     | 81,4        | 12,9                                    | 1884             | 38,2        | 4,8                                     | 108         | 17,2                                    |  |  |  |
| 402  | 1022              | 1044             | 38,6           | 6,4                                     | 81,8        | 15,8                                    | 1329             | 42,3        | 7,0                                     | 95,0        | 18,1                                    | 1708             | 44,5        | 7,0                                     | 141         | 27,3                                    |  |  |  |
| 445  | 1130              | 944              | 57,3           | 9,8                                     | 149         | 37,1                                    | 1202             | 61,4        | 10,7                                    | 160         | 39,3                                    | 1545             | 64,5        | 10,8                                    | 214         | 52,9                                    |  |  |  |
| 490  | 1245              | 857              | 74,5           | 16,5                                    | 166         | 49,3                                    | 1091             | 74,5        | 16,5                                    | 180         | 52,6                                    | 1403             | 79,1        | 22,5                                    | 243         | 72,0                                    |  |  |  |
| 542  | 1378              | 775              | 103            | 26,6                                    | 233         | 86,3                                    | 986              | 103         | 26,6                                    | 297         | 108                                     | 1267             | 109         | 28,4                                    | 316         | 117                                     |  |  |  |
| 600  | 1524              | 700              | 116            | 39,2                                    | 301         | 136                                     | 891              | 116         | 39,2                                    | 341         | 149                                     | 1146             | 123         | 41,8                                    | 364         | 162                                     |  |  |  |
| 660  | 1676              | 637              | 157            | 58,0                                    | 433         | 237                                     | 810              | 157         | 58,0                                    | 500         | 274                                     | 1041             | 169         | 62,3                                    | 462         | 249                                     |  |  |  |
| 730  | 1854              | 576              | 187            | 86,3                                    | 489         | 322                                     | 733              | 227         | 113                                     | 524         | 340                                     | 942              | 250         | 126                                     | 599         | 391                                     |  |  |  |
| 807  | 2051              | 488              | 227            | 127                                     | 585         | 327                                     | 637              | 261         | 146                                     | 635         | 356                                     | 802              | N/A         | N/A                                     | 735         | 447                                     |  |  |  |
| 890  | 2261              | 443              | 352            | 238                                     | 880         | 595                                     | 578              | 402         | 271                                     | 882         | 595                                     | 728              | N/A         | N/A                                     | 1070        | 765                                     |  |  |  |

## Maximale Drehzahl, Laufradgewichte und WR<sup>2</sup> - EPQ und EPQN

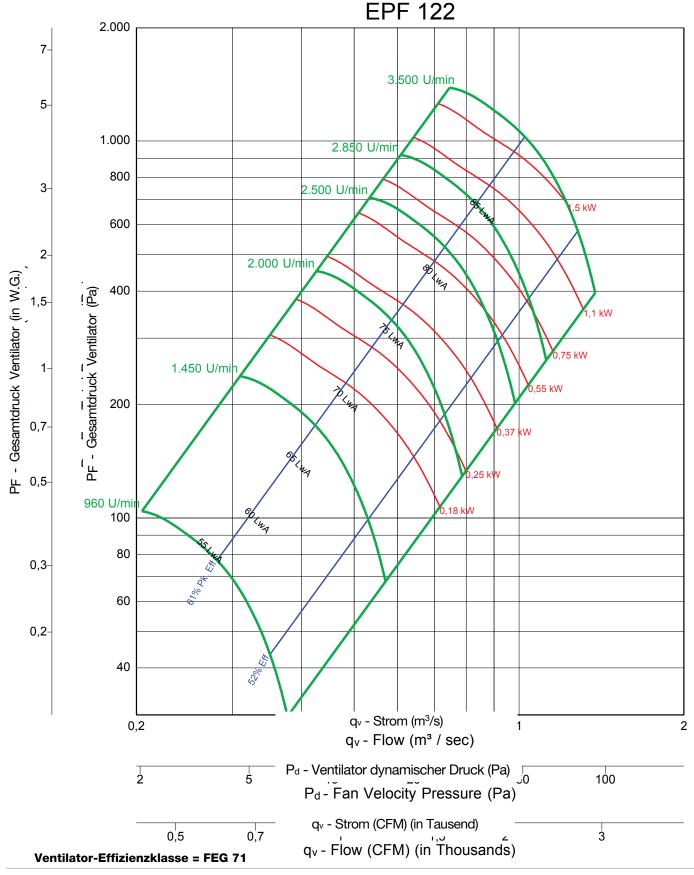
|      | LAUFRAD-       |                  | KLASSE      |                                         |             | KLASSE I                                |                  | KLASSE III  |                                         |             |                                         |                  |             |                                         |             |                                         |
|------|----------------|------------------|-------------|-----------------------------------------|-------------|-----------------------------------------|------------------|-------------|-----------------------------------------|-------------|-----------------------------------------|------------------|-------------|-----------------------------------------|-------------|-----------------------------------------|
| EPQ  | DURCH-         | MAX.             | ALUM        | IINIUM                                  | ST          | <b>AHL</b>                              | MAX.             | ALUN        | INIUM                                   | ST          | <b>AHL</b>                              | MAX.             | ALUN        | IINIUM                                  | ST          | AHL                                     |
| EPQN | MESSER<br>(mm) | U/MIN<br>(20 °C) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | U/MIN<br>(20 °C) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | U/MIN<br>(20 °C) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) | WT.<br>(kg) | WR <sup>2</sup><br>(kg-m <sup>2</sup> ) |
| 122  | 315            | 3388             | 4,5         | 0,09                                    | N/A         | N/A                                     | 4000             | 4,5         | 0,09                                    | N/A         | N/A                                     | N/A              | N/A         | N/A                                     | N/A         | N/A                                     |
| 150  | 355            | 3006             | 5,9         | 0,14                                    | N/A         | N/A                                     | 3909             | 5,9         | 0,14                                    | N/A         | N/A                                     | N/A              | N/A         | N/A                                     | N/A         | N/A                                     |
| 165  | 400            | 2668             | 7,7         | 0,22                                    | N/A         | N/A                                     | 3468             | 7,7         | 0,22                                    | N/A         | N/A                                     | N/A              | N/A         | N/A                                     | N/A         | N/A                                     |
| 182  | 464            | 2302             | 9,1         | 0,30                                    | N/A         | N/A                                     | 2930             | 9,1         | 0,3                                     | N/A         | N/A                                     | 3767             | 10,5        | 0,31                                    | N/A         | N/A                                     |
| 200  | 508            | 2101             | 10,9        | 0,42                                    | N/A         | N/A                                     | 2674             | 10,9        | 0,35                                    | N/A         | N/A                                     | 3438             | 12,3        | 0,42                                    | N/A         | N/A                                     |
| 222  | 565            | 1888             | 15,5        | 0,59                                    | N/A         | N/A                                     | 2403             | 15,5        | 0,59                                    | N/A         | N/A                                     | 3090             | 17,3        | 0,72                                    | N/A         | N/A                                     |
| 245  | 622            | 1715             | 17,7        | 1,0                                     | N/A         | N/A                                     | 2183             | 17,7        | 1,0                                     | N/A         | N/A                                     | 2806             | 19,5        | 1,01                                    | N/A         | N/A                                     |
| 270  | 686            | 1556             | 20,9        | 1,5                                     | 43,6        | 4,0                                     | 1981             | 20,9        | 1,5                                     | 48,6        | 4,4                                     | 2546             | 24,1        | 1,6                                     | 64,5        | 5,7                                     |
| 300  | 762            | 1401             | 25,9        | 2,3                                     | 52,7        | 5,7                                     | 1783             | 27,7        | 2,5                                     | 56,4        | 6,1                                     | 2291             | 29,5        | 2,5                                     | 75,5        | 8,1                                     |
| 330  | 838            | 1273             | 32,7        | 3,4                                     | 68,6        | 9,1                                     | 1620             | 35,0        | 3,7                                     | 76,8        | 10,0                                    | 2083             | 37,3        | 3,7                                     | 101         | 13,3                                    |
| 365  | 927            | 1151             | 38,6        | 5,1                                     | 80,0        | 12,9                                    | 1465             | 41,4        | 5,4                                     | 90,5        | 14,3                                    | 1884             | 43,6        | 5,5                                     | 117         | 18,7                                    |
| 402  | 1022           | 1044             | 45,0        | 7,4                                     | 92,3        | 17,9                                    | 1329             | 48,6        | 8,0                                     | 105         | 20,2                                    | 1708             | 50,9        | 8,0                                     | 157         | 30,4                                    |
| 445  | 1130           | 944              | 64,1        | 11,5                                    | 162         | 40,2                                    | 1202             | 68,2        | 12,4                                    | 172         | 42,4                                    | 1545             | 71,4        | 12,5                                    | 233         | 57,6                                    |
| 490  | 1245           | 857              | 83,2        | 19,0                                    | 182         | 54,0                                    | 1091             | 83,2        | 19,0                                    | 195         | 57,3                                    | 1403             | 90,9        | 20,3                                    | 266         | 78,9                                    |
| 542  | 1378           | 775              | 114         | 30,4                                    | 250         | 93,3                                    | 986              | 114         | 30,4                                    | 325         | 118                                     | 1267             | 119         | 32,2                                    | 345         | 127                                     |
| 600  | 1524           | 700              | 132         | 44,6                                    | 336         | 151                                     | 891              | 132         | 44,6                                    | 375         | 164                                     | 1146             | 139         | 47,1                                    | 397         | 176                                     |
| 660  | 1676           | 637              | 173         | 66,3                                    | 476         | 260                                     | 810              | 173         | 66,3                                    | 505         | 272                                     | 1041             | 184         | 70,6                                    | 542         | 297                                     |
| 730  | 1854           | 576              | 206         | 98,7                                    | 541         | 356                                     | 733              | 246         | 125                                     | 576         | 374                                     | 942              | 269         | 138                                     | 651         | 425                                     |
| 807  | 2051           | 488              | 248         | 144                                     | 642         | 372                                     | 637              | 293         | 170                                     | 691         | 401                                     | 802              | N/A         | N/A                                     | 811         | 509                                     |
| 890  | 2261           | 443              | 384         | 269                                     | 964         | 677                                     | 578              | 450         | 315                                     | 966         | 677                                     | 728              | N/A         | N/A                                     | 1162        | 856                                     |

 $<sup>^{\</sup>star}\mathrm{F\ddot{u}r}$  Ventilatoren über 4000 U/min wenden Sie sich bitte an den Hersteller.


Für Ventilatoren mit Riemenanrieb über 110 kW wenden Sie sich bitte an den Hersteller.

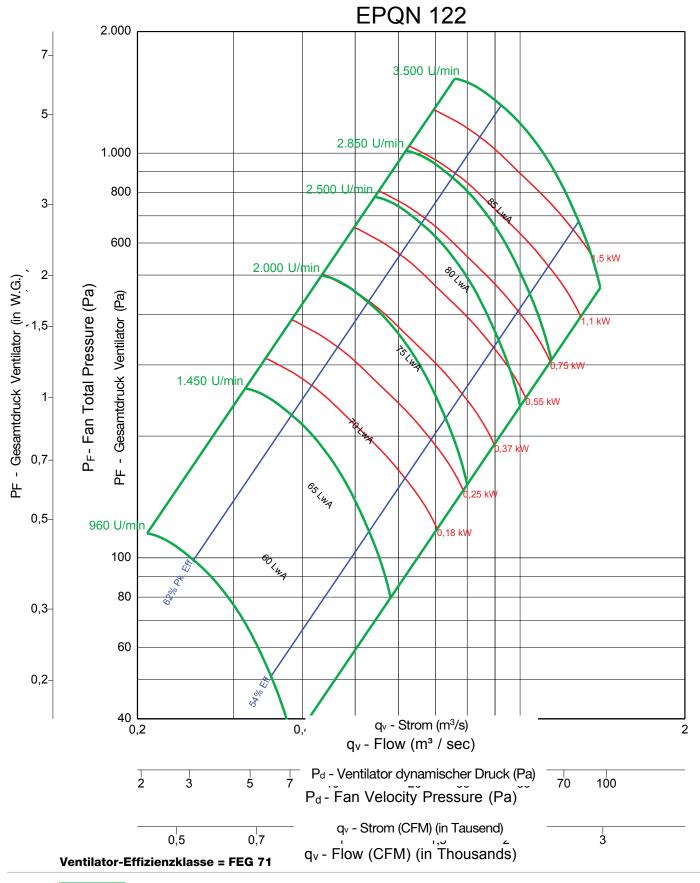
#### **Reine Ventilatorgewichte**

| ALICOTAL           | LAUFRAD-            | BAUF | ORM 1 ( | EPQN)  | BAUF | ORM 3 | (EPQ)  | BAUFORM 4 (EPQN) |       |        |  |
|--------------------|---------------------|------|---------|--------|------|-------|--------|------------------|-------|--------|--|
| AUSSEN-<br>GEHÄUSE | DURCHMESSER<br>(mm) | KL I | KL II   | KL III | KLI  | KL II | KL III | KLI              | KL II | KL III |  |
| 122                | 315                 | 42,3 | 42,7    | N/A    | 35,9 | 35,9  | N/A    | 37,7             | 37,7  | N/A    |  |
| 150                | 355                 | 52,3 | 53,2    | N/A    | 45,0 | 45,9  | N/A    | 46,4             | 46,4  | N/A    |  |
| 165                | 400                 | 60,5 | 61,4    | N/A    | 51,8 | 52,7  | N/A    | 54,5             | 54,5  | N/A    |  |
| 182                | 464                 | 75,0 | 76,8    | 85,5   | 65,0 | 66,8  | 74,5   | 67,7             | 68,2  | 75,5   |  |
| 200                | 508                 | 87,3 | 87,3    | 96,8   | 75,9 | 75,9  | 84,5   | 78,2             | 78,2  | 86,4   |  |
| 222                | 565                 | 110  | 112     | 124    | 95,0 | 95,0  | 108    | 100              | 100   | 110    |  |
| 245                | 622                 | 129  | 131     | 144    | 111  | 114   | 126    | 115              | 115   | 127    |  |
| 270                | 686                 | 180  | 187     | 217    | 155  | 163   | 195    | 165              | 170   | 198    |  |
| 300                | 762                 | 226  | 230     | 267    | 196  | 204   | 238    | 205              | 210   | 245    |  |
| 330                | 838                 | 276  | 288     | 333    | 239  | 255   | 297    | 254              | 263   | 306    |  |
| 365                | 927                 | 347  | 365     | 420    | 305  | 325   | 369    | 322              | 333   | 384    |  |
| 402                | 1022                | 398  | 416     | 498    | 346  | 370   | 448    | 367              | 381   | 462    |  |
| 445                | 1130                | 587  | 603     | 705    | 515  | 538   | 650    | 547              | 559   | 660    |  |
| 490                | 1245                | 675  | 694     | 807    | 586  | 612   | 742    | 629              | 642   | 761    |  |
| 542                | 1378                | 834  | 923     | 992    | 740  | 824   | 903    | 784              | 863   | 936    |  |
| 600                | 1524                | 948  | 1002    | 1075   | 865  | 925   | 1014   | 883              | 923   | 1000   |  |
| 660                | 1676                | 1190 | 1238    | 1333   | 1106 | 1163  | 1277   | 948              | 970   | 1065   |  |
| 730                | 1854                | 1362 | 1417    | 1558   | 1295 | 1329  | 1492   | N/A              | N/A   | N/A    |  |
| 807                | 2051                |      |         |        |      |       |        |                  |       |        |  |
| 890                | 2261                |      |         |        |      |       |        |                  |       |        |  |


#### HINWEISE:

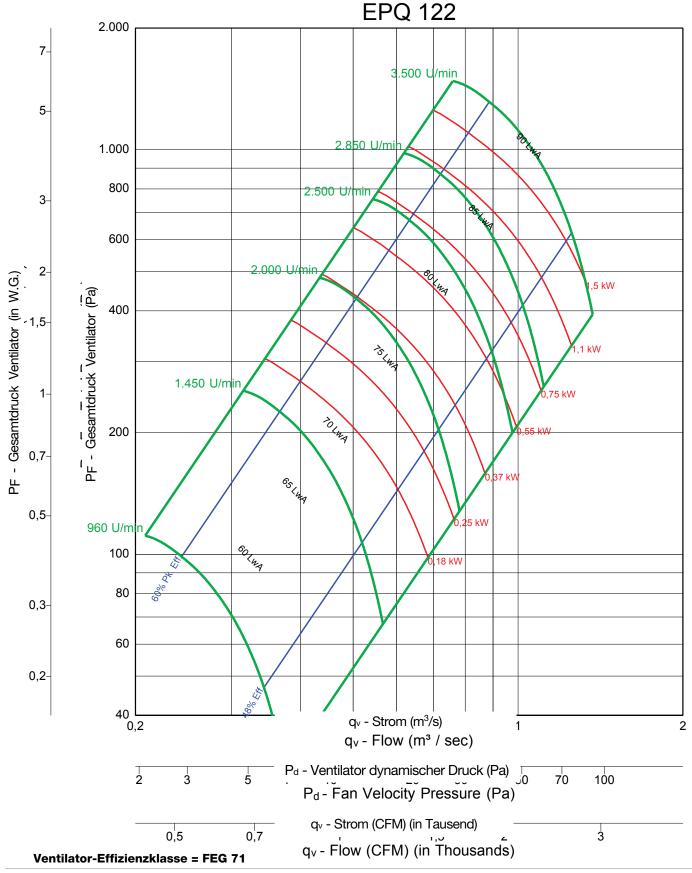
- Die Gewichte von Bauform 1 und 3 beinhalten ein Aluminium-Laufrad bei Größe 122 bis 245 und ein Stahl-Laufrad bei Größe 270 bis 730.
- Die Gewichte bei Bauform 4 beinhalten ein Aluminium-Laufrad bei allen Größen.
- Die Gewichte gelten für die Laufrad-Ausführung mit 12 Schaufeln (EPQ und EPQN). Die Ausführungen mit 9 Schaufeln (EPF and EPFN) haben ein etwas geringeres Gewicht. Hier kann die Differenz zwischen den oben angegebenen Laufradgewichgen abgezogen werden.
- Motor, Antrieb, Motorsockel oder Motorspannschlitten sind nicht in den Gewichten enthalten.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

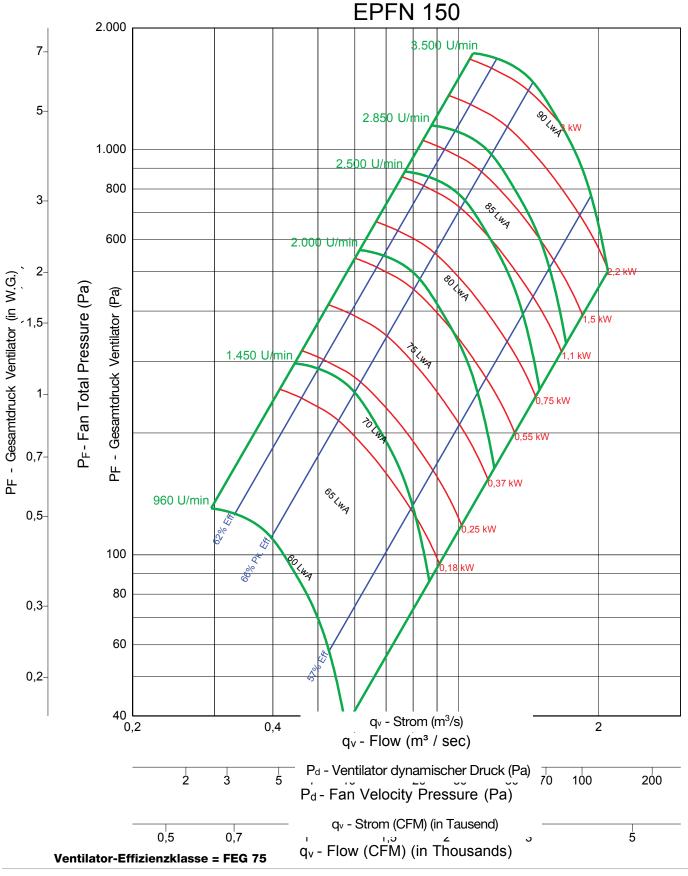





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



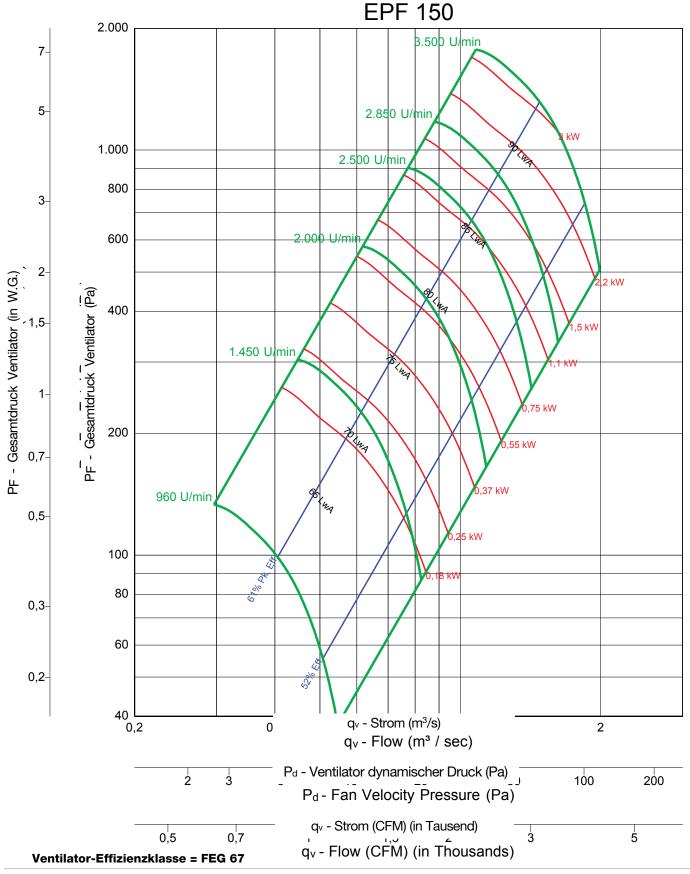



- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



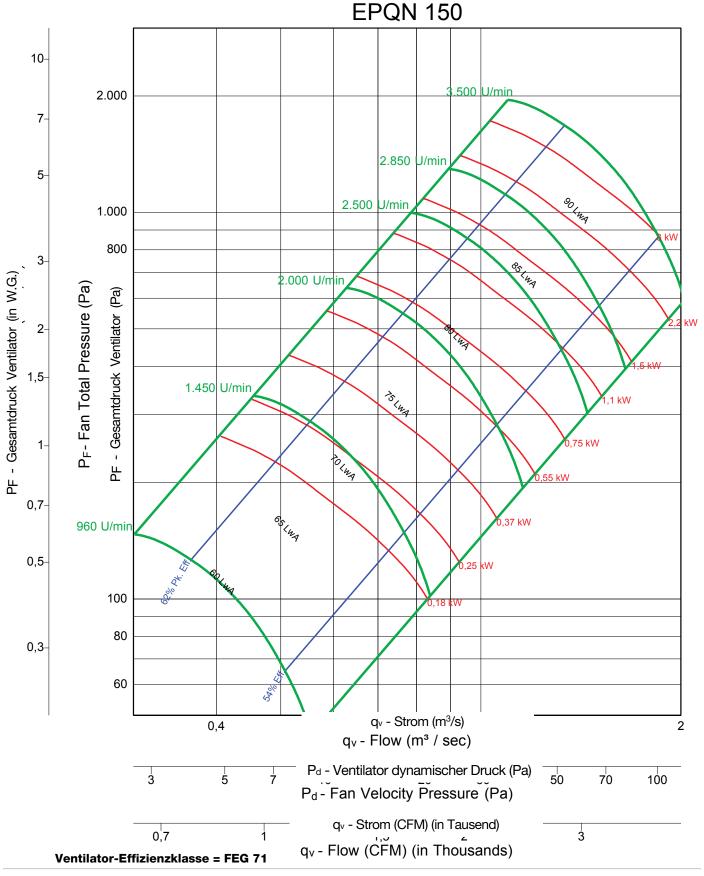


- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
   Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).


- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



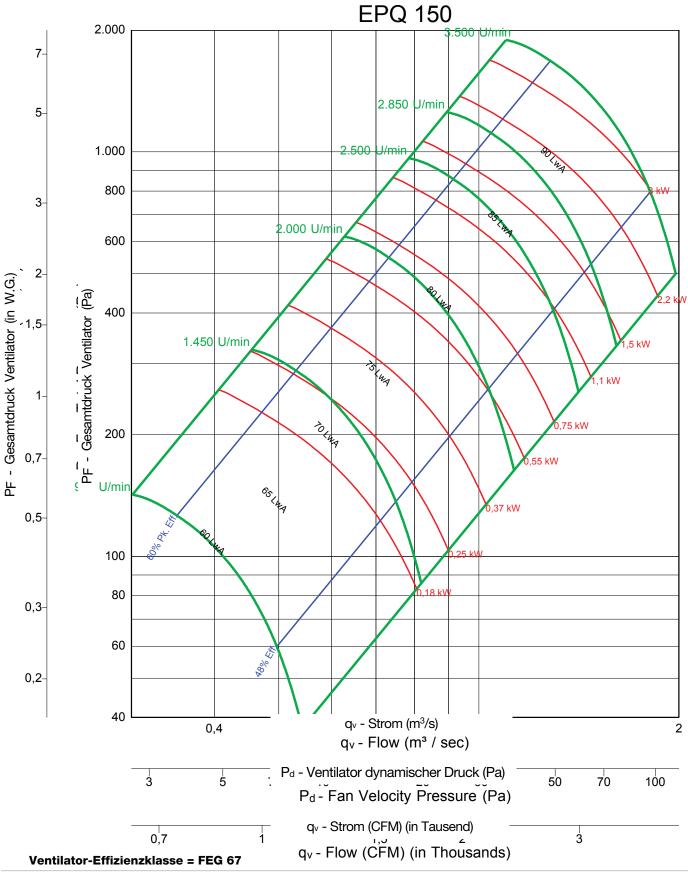



- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
   Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).

- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



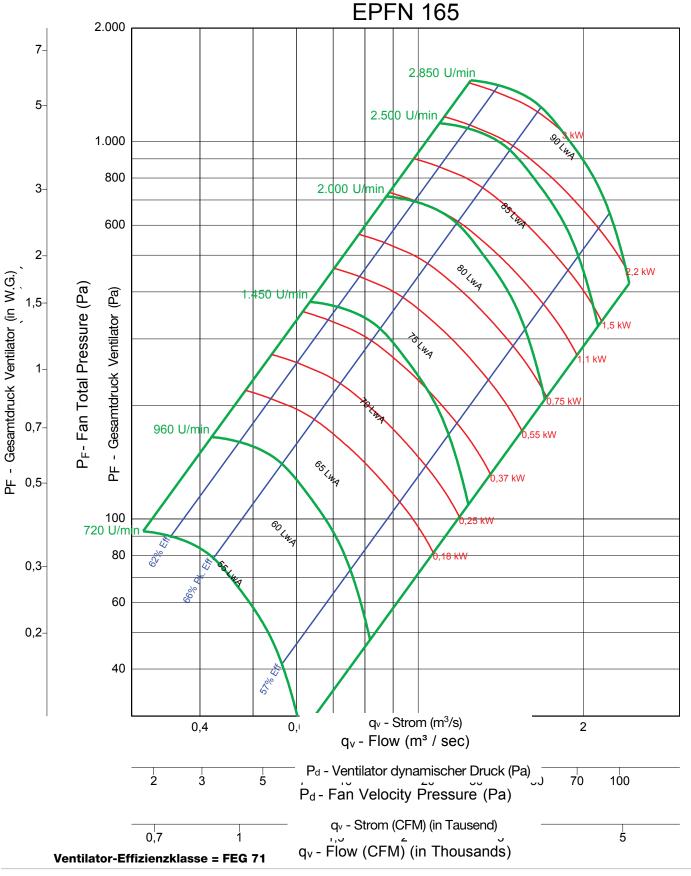



- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
   Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
   Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



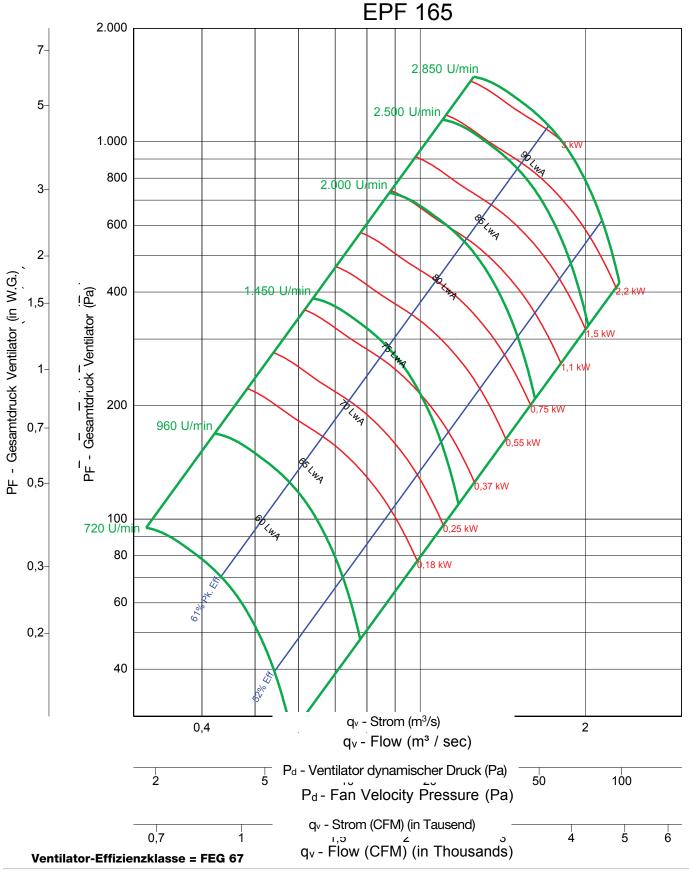


- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.


- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
  4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

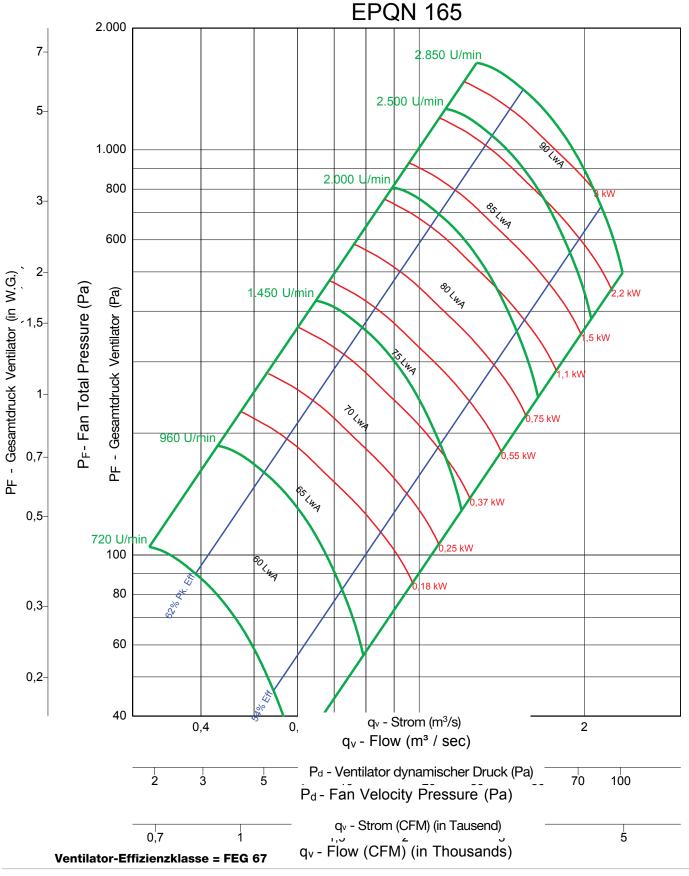





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.

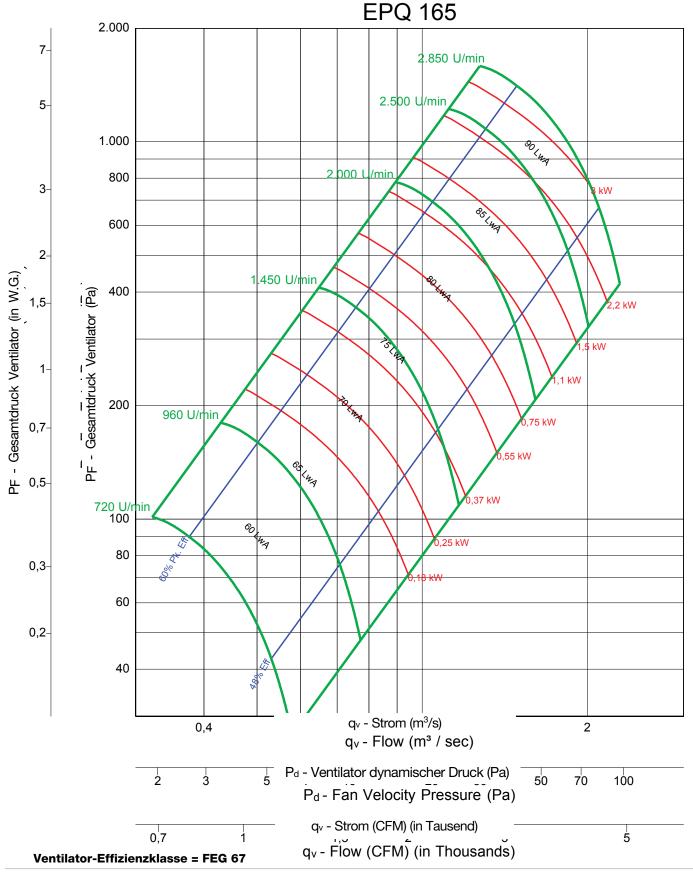
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
  4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





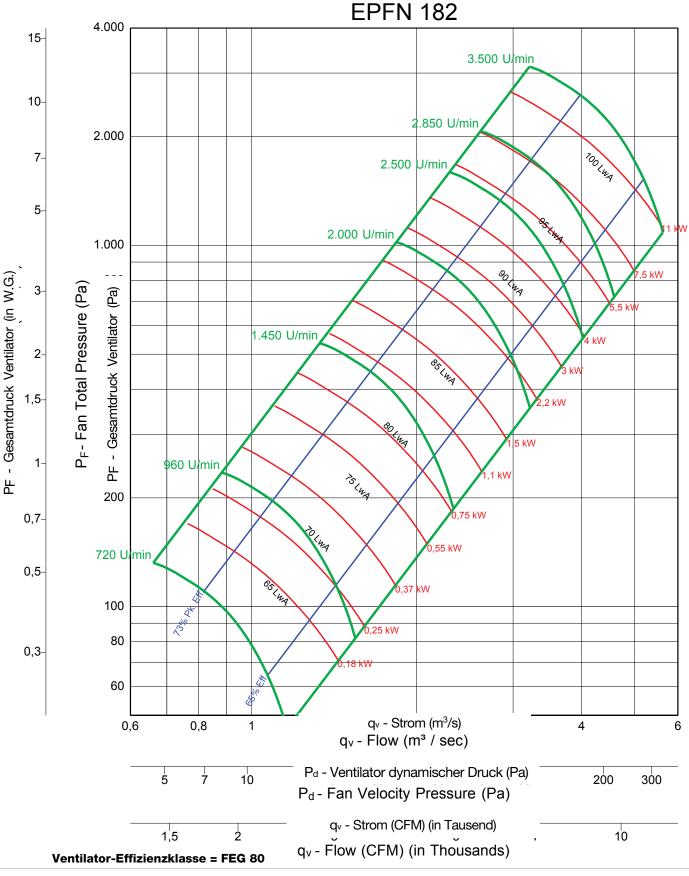

- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
   Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
   Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
   Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
   Die dargestellen Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

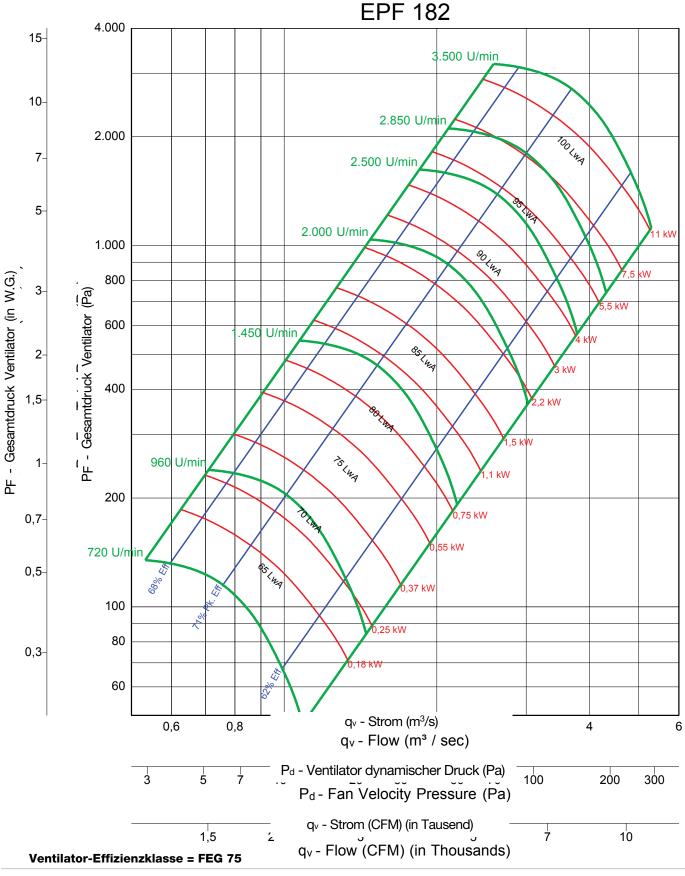





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
   Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
   Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

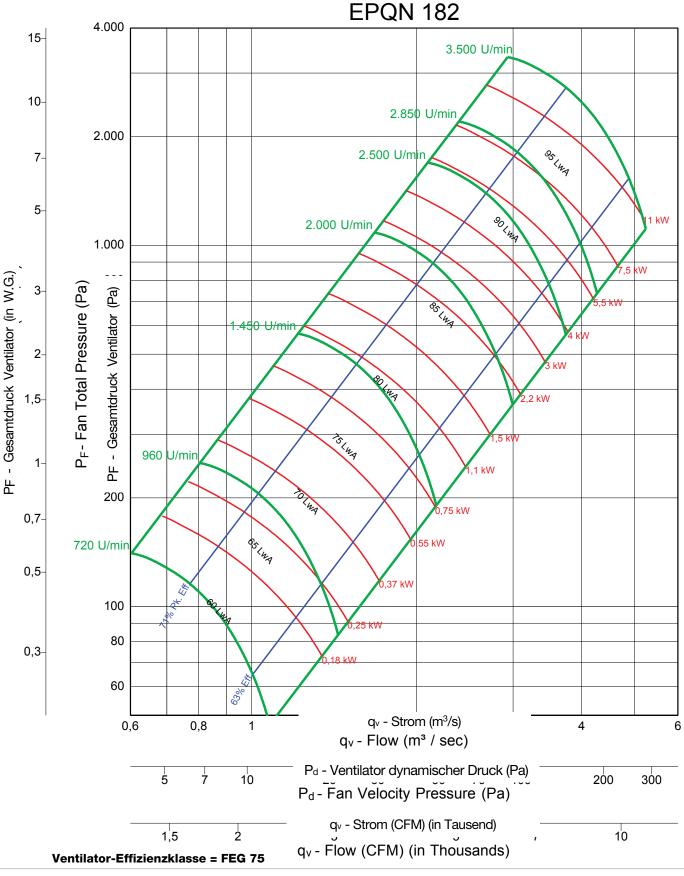





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
   Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
   Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



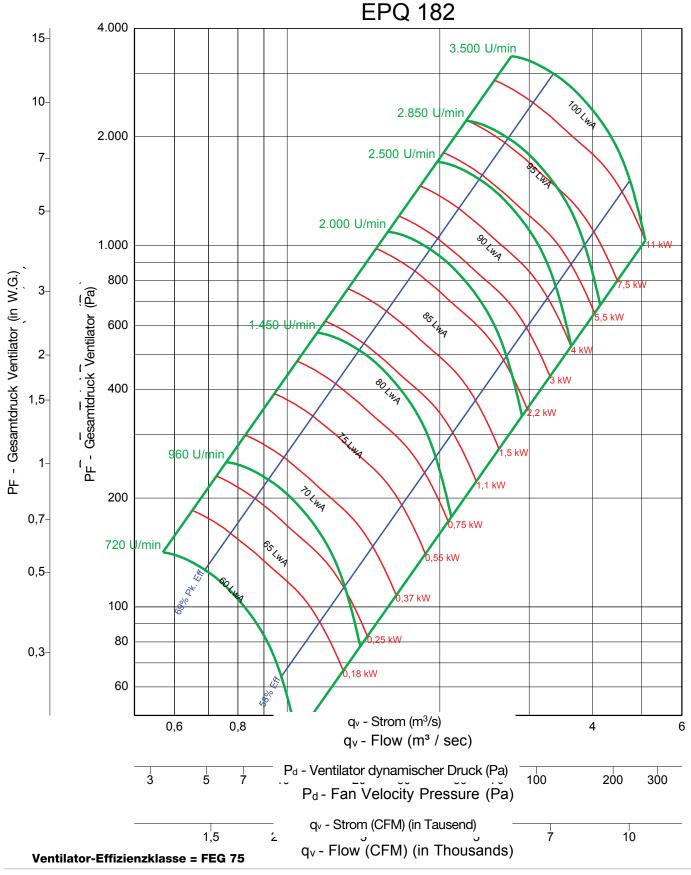



- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.

- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
  4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

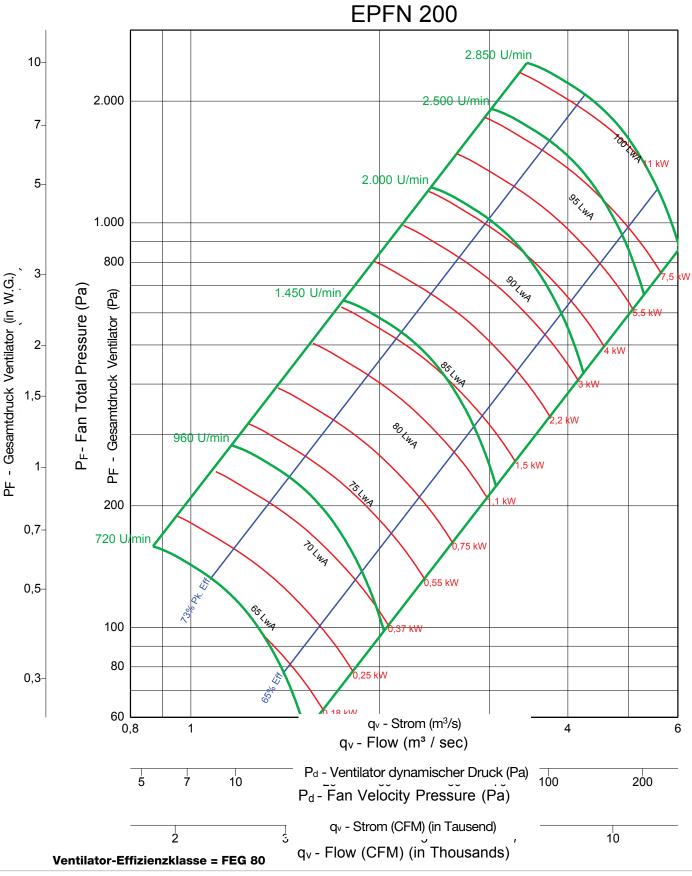





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
   Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
   Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

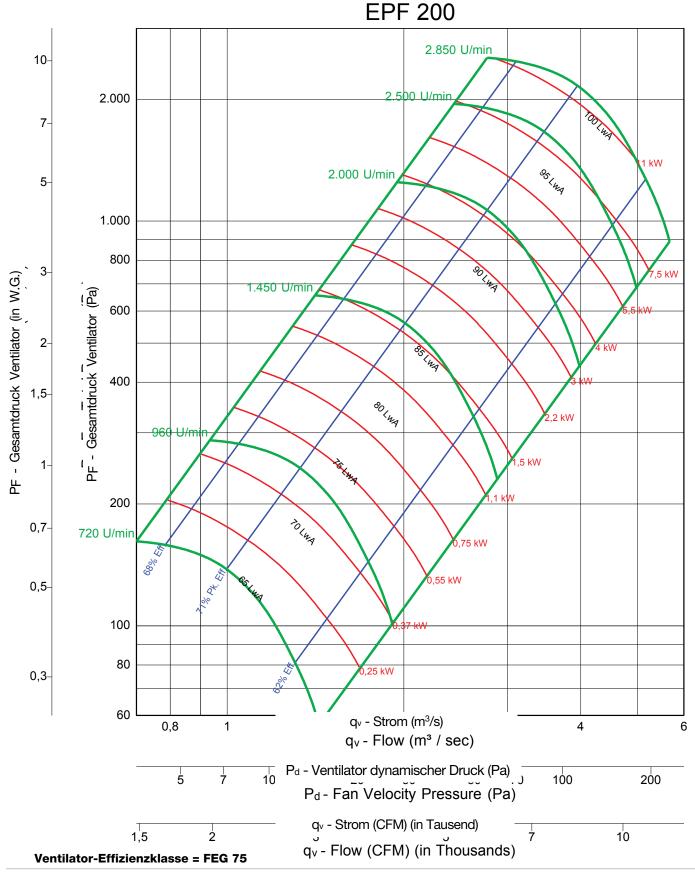





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.

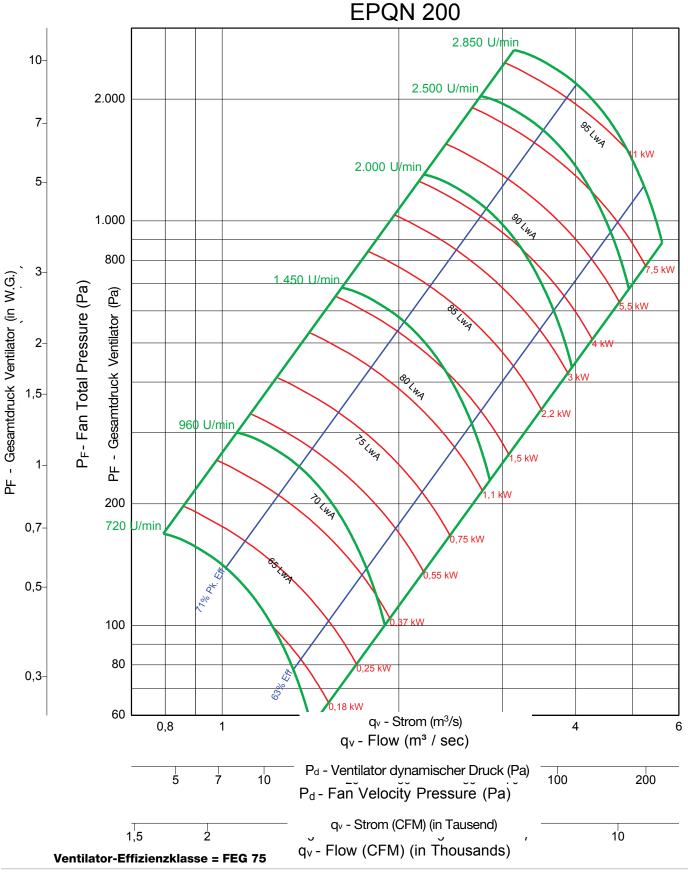
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
  4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
- 6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





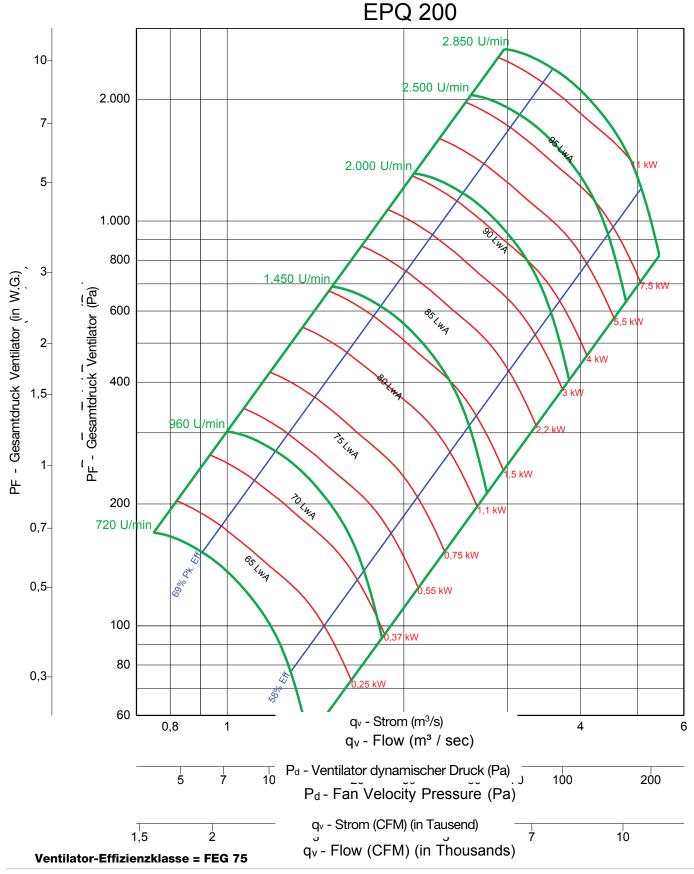

- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



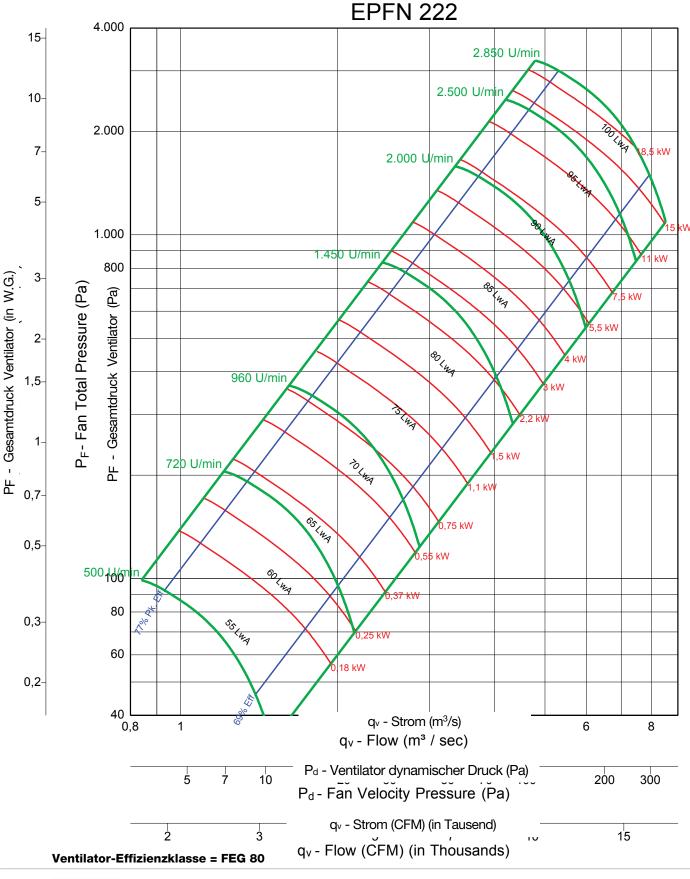



- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



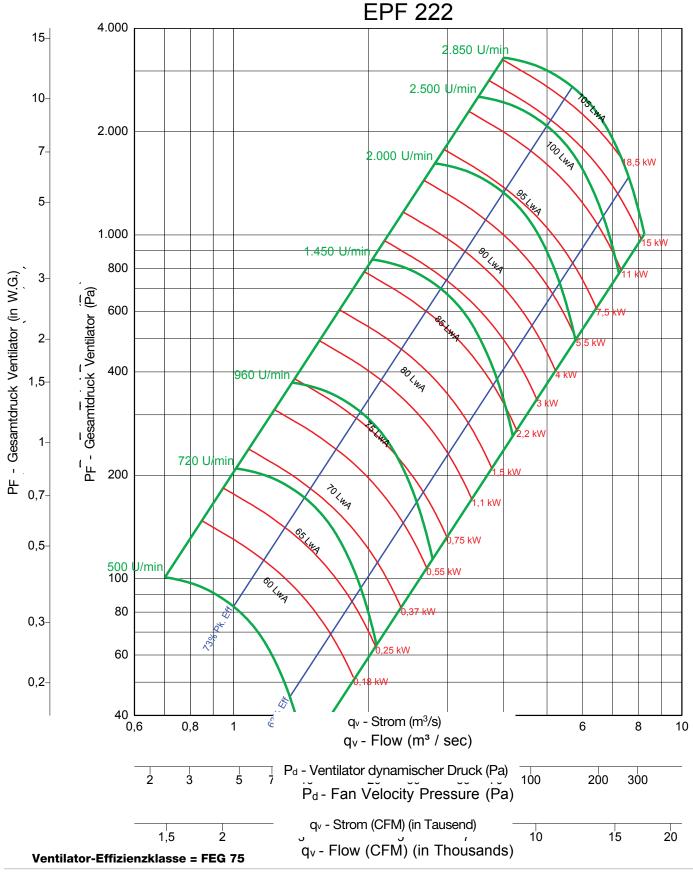


- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

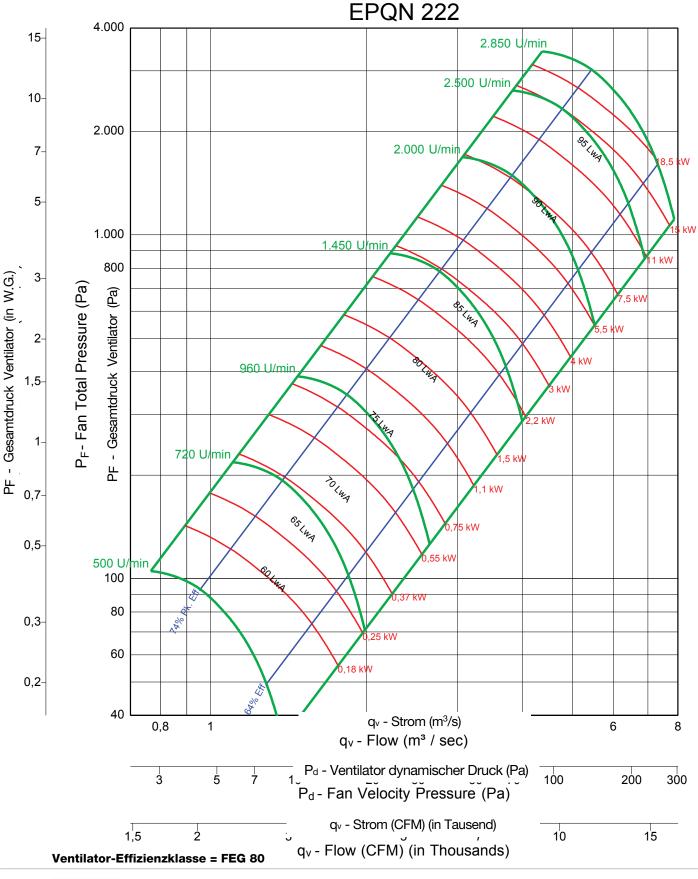

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

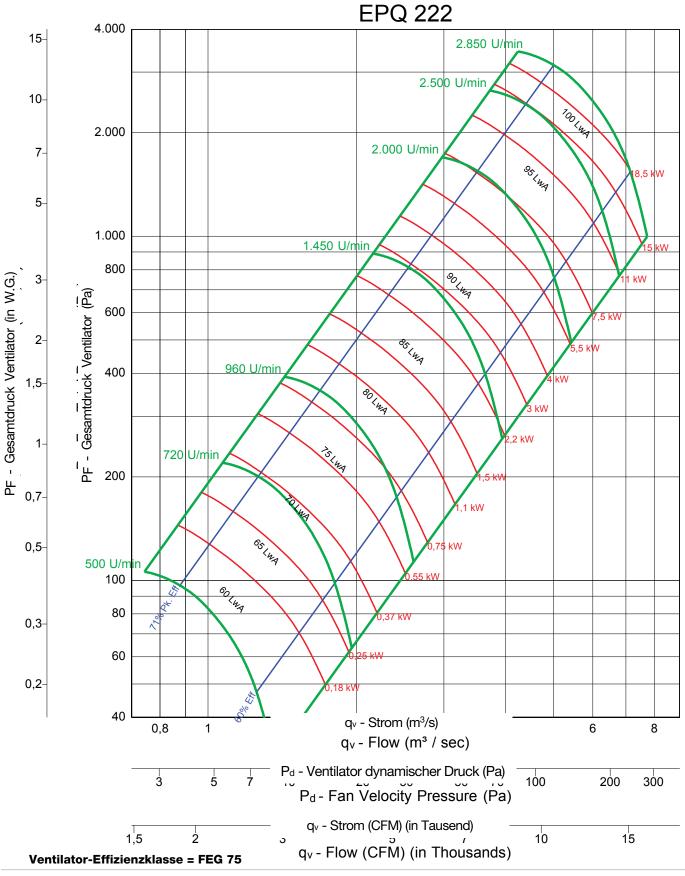





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

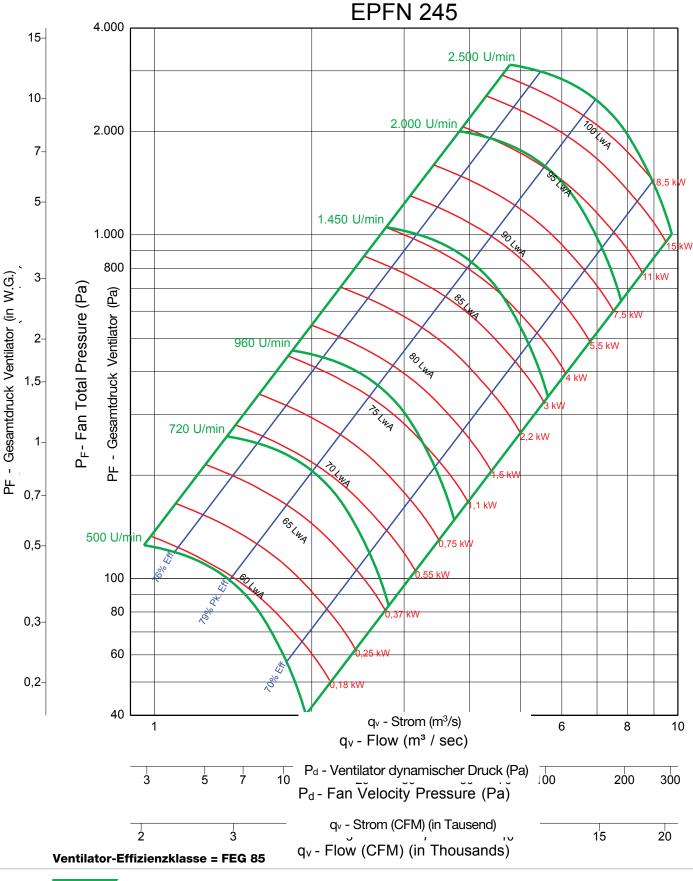
  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

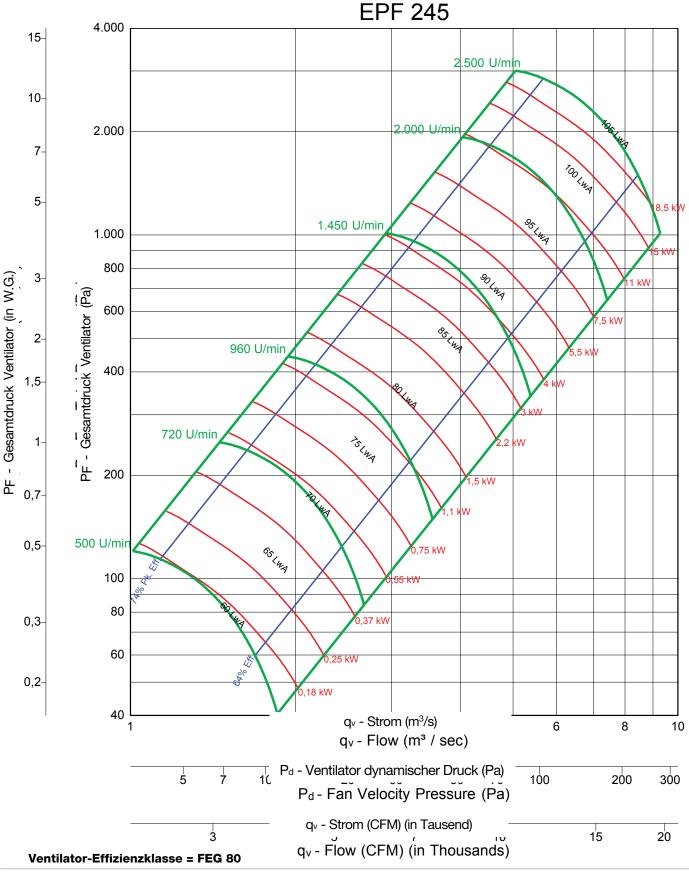

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

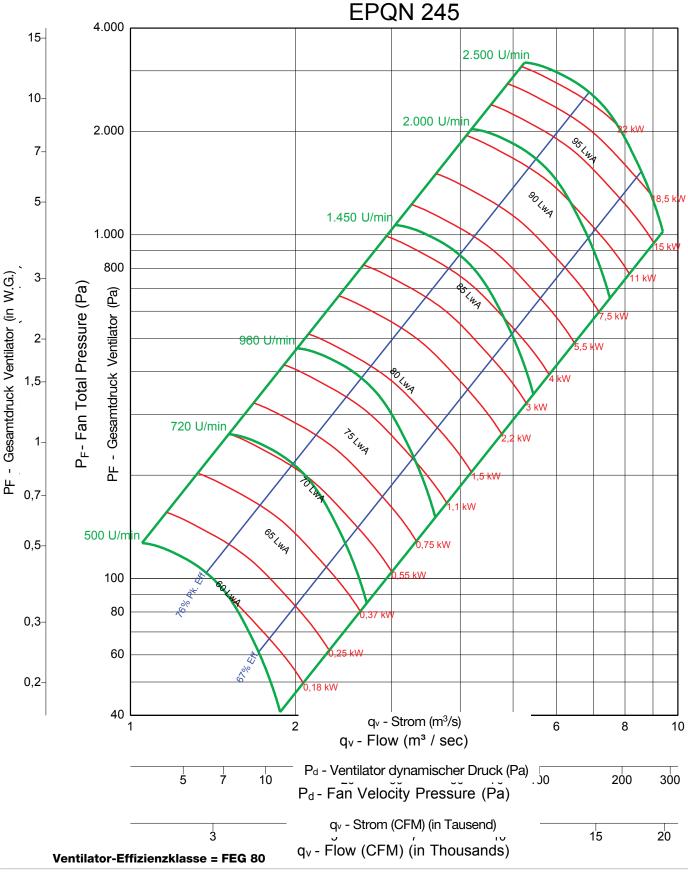





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

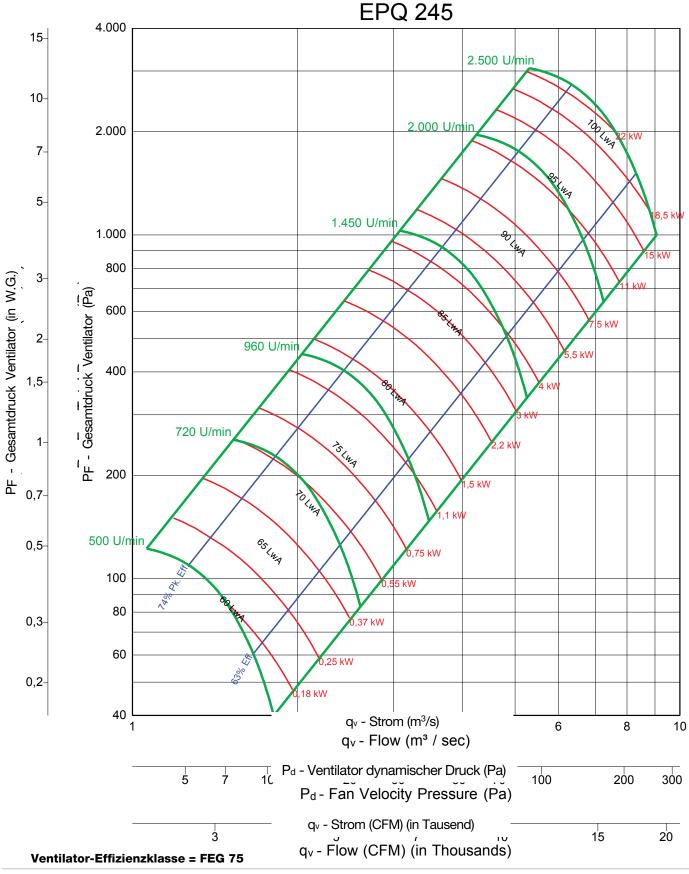





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

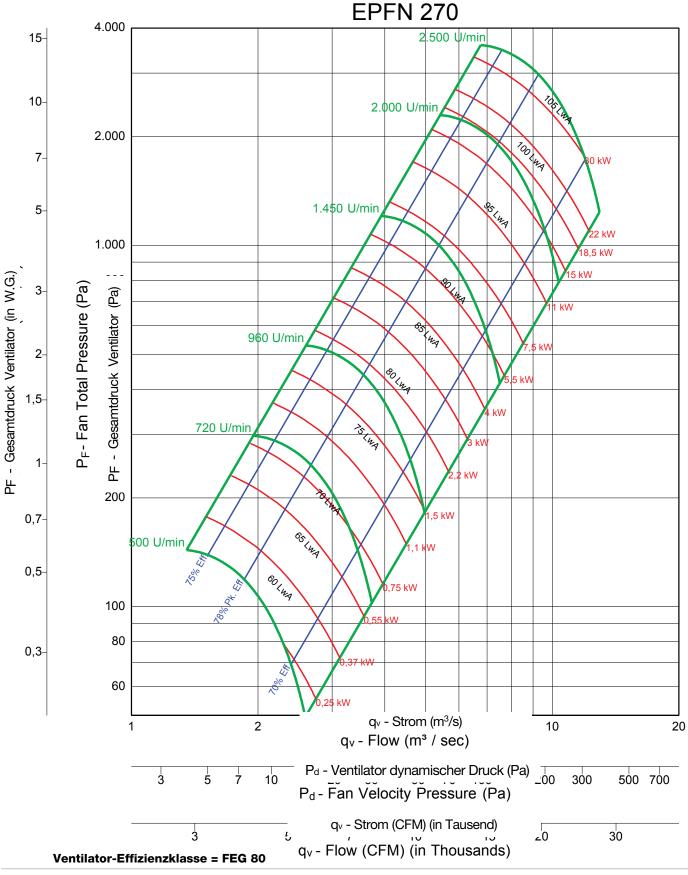





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

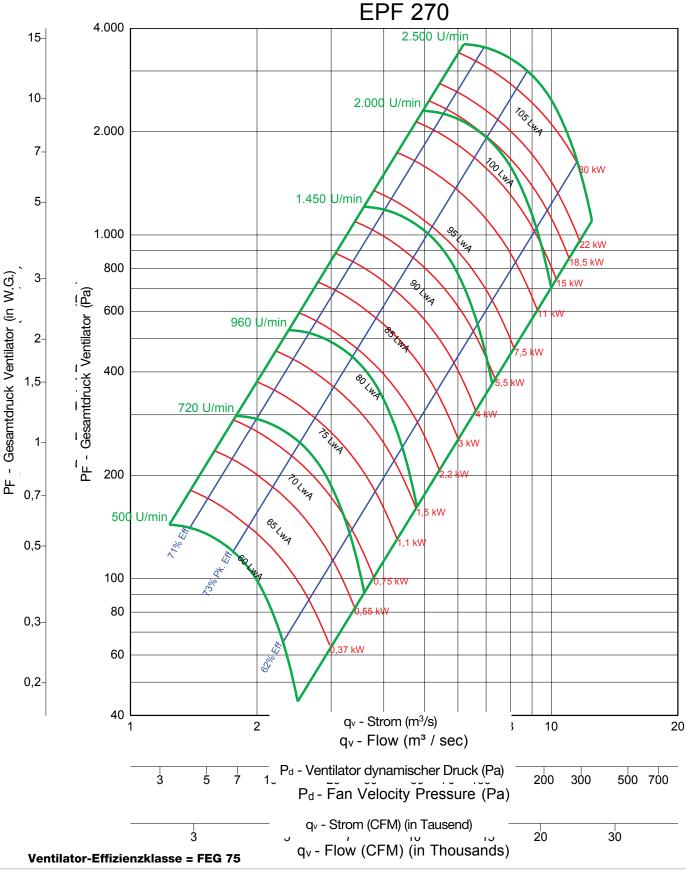
  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



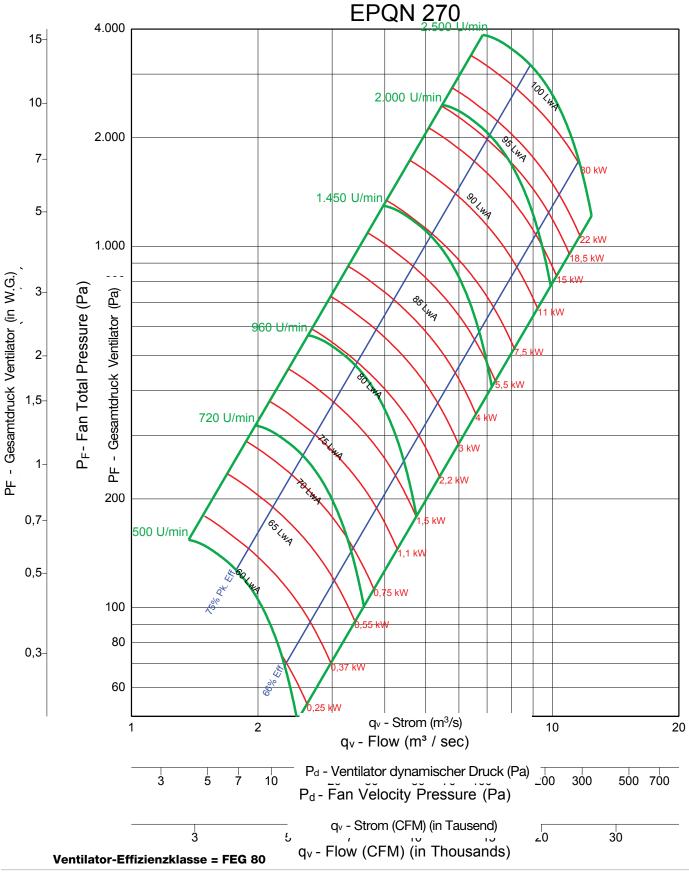



- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.


  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



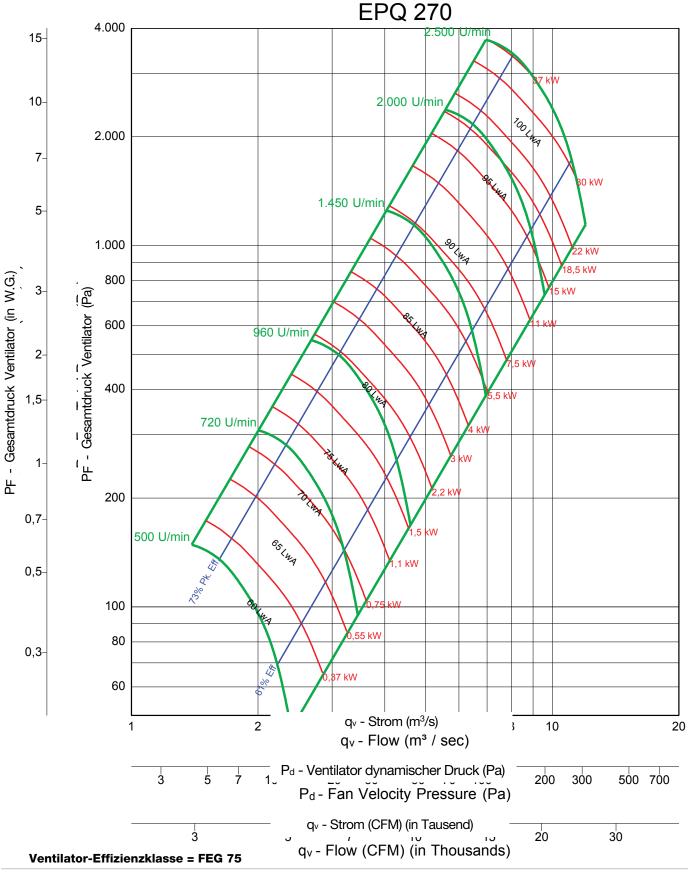



- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



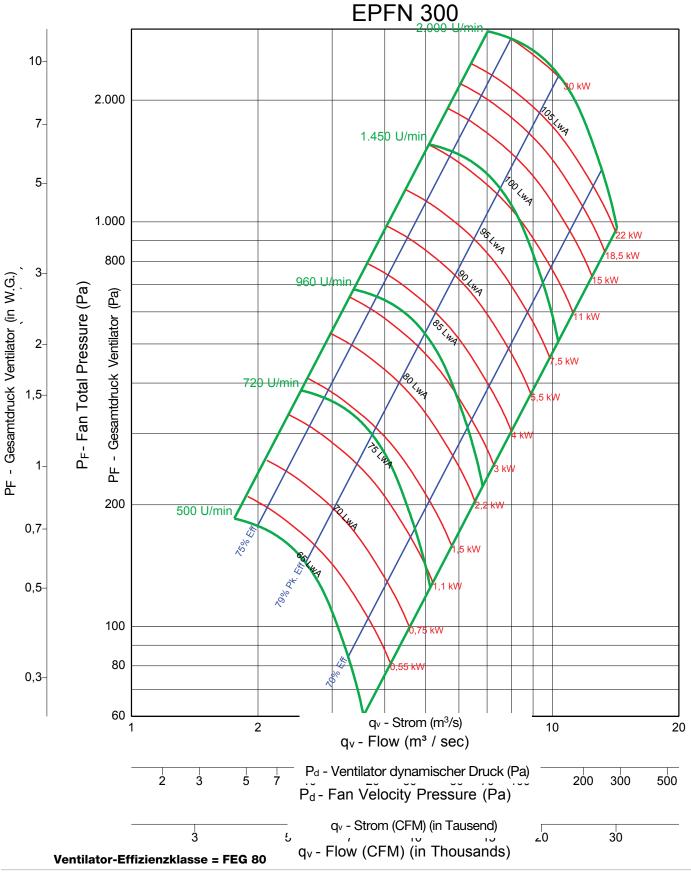


- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



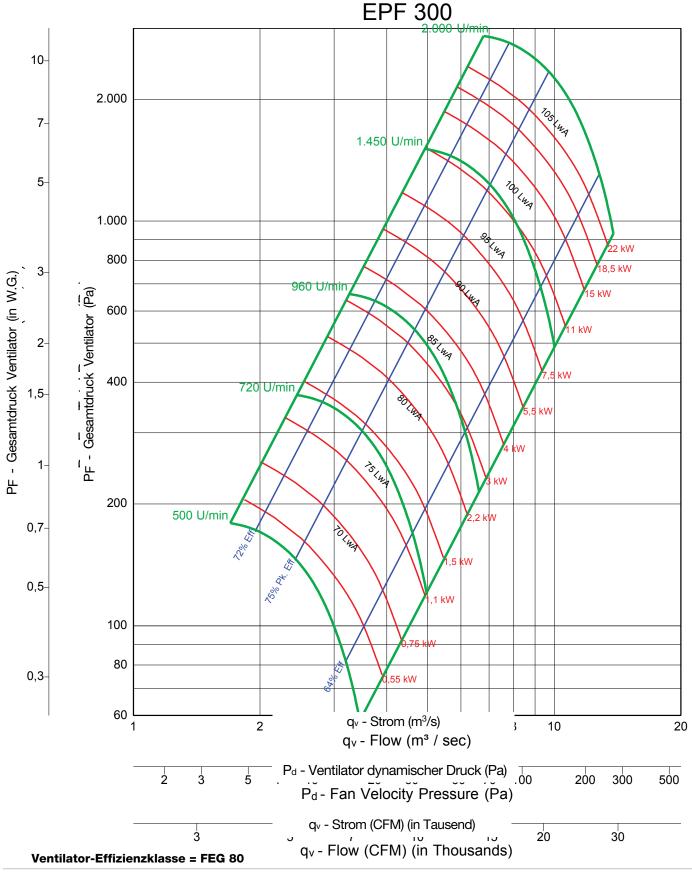



- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.


  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

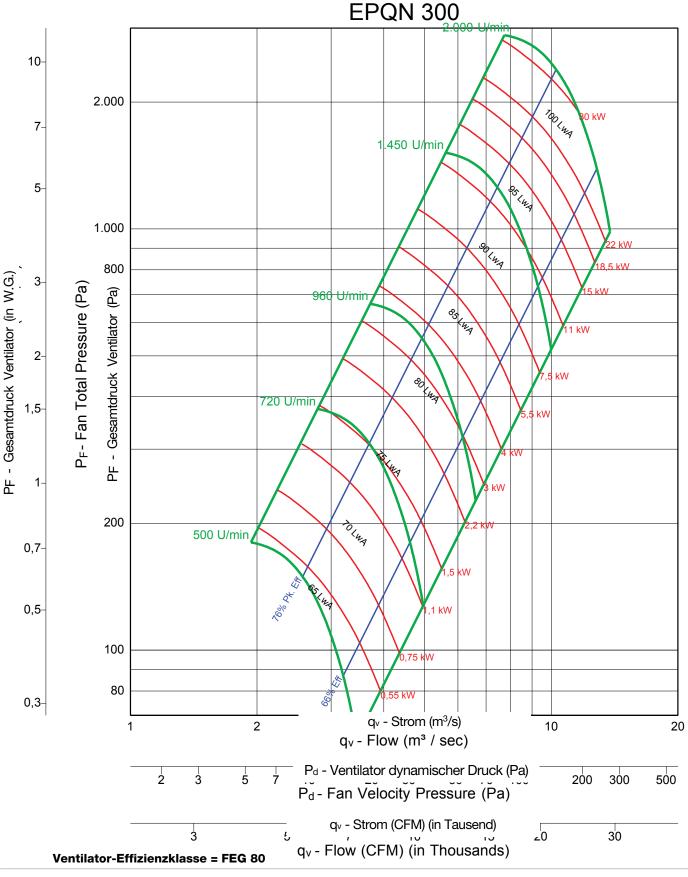
  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



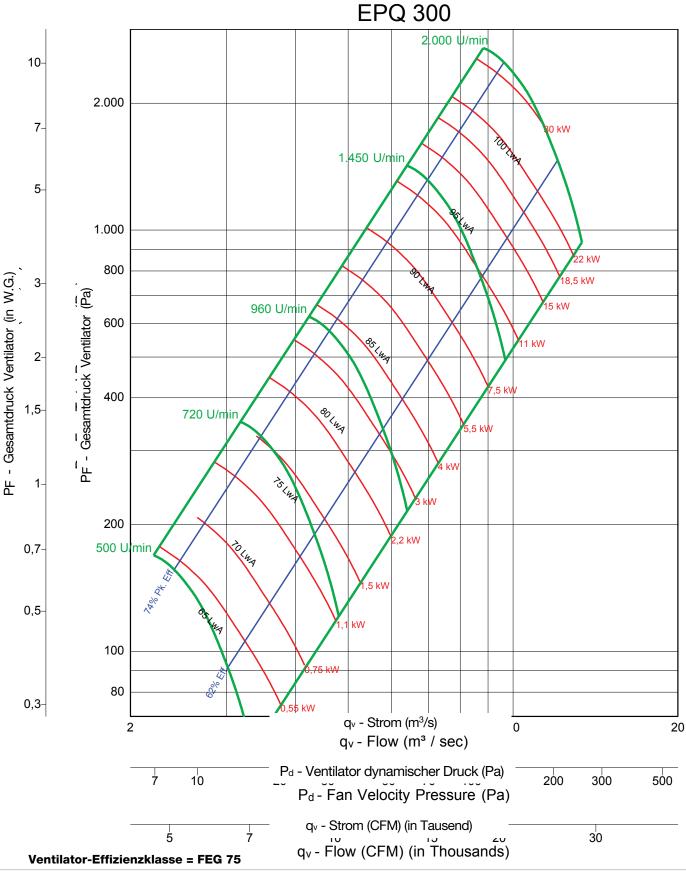



- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



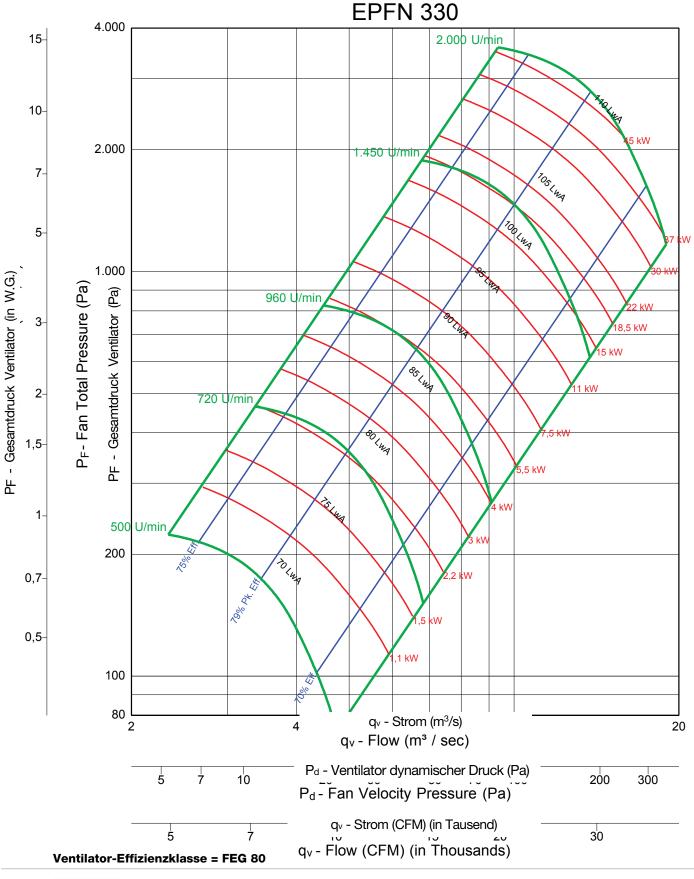


- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



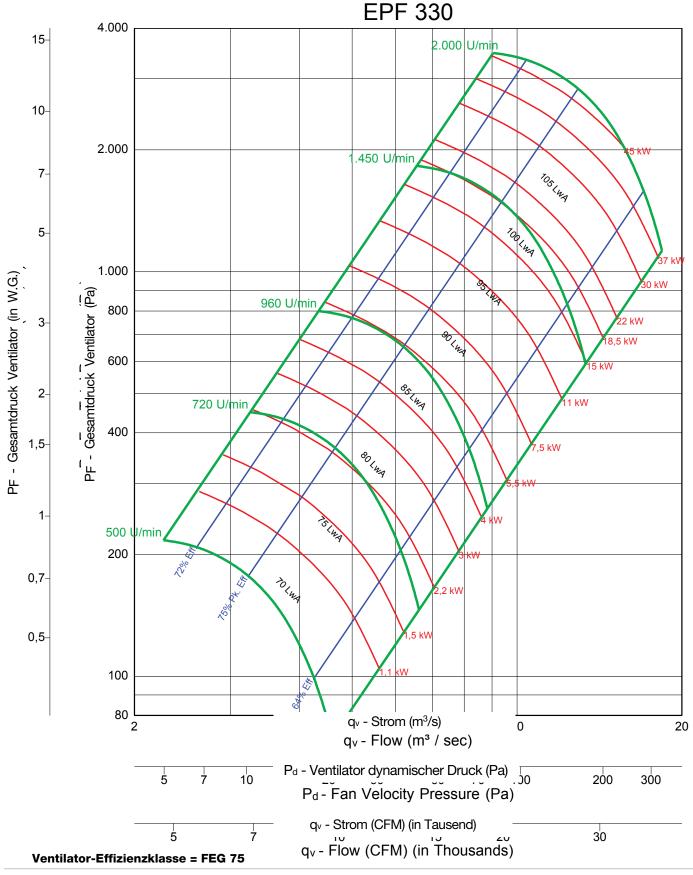



- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.


  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

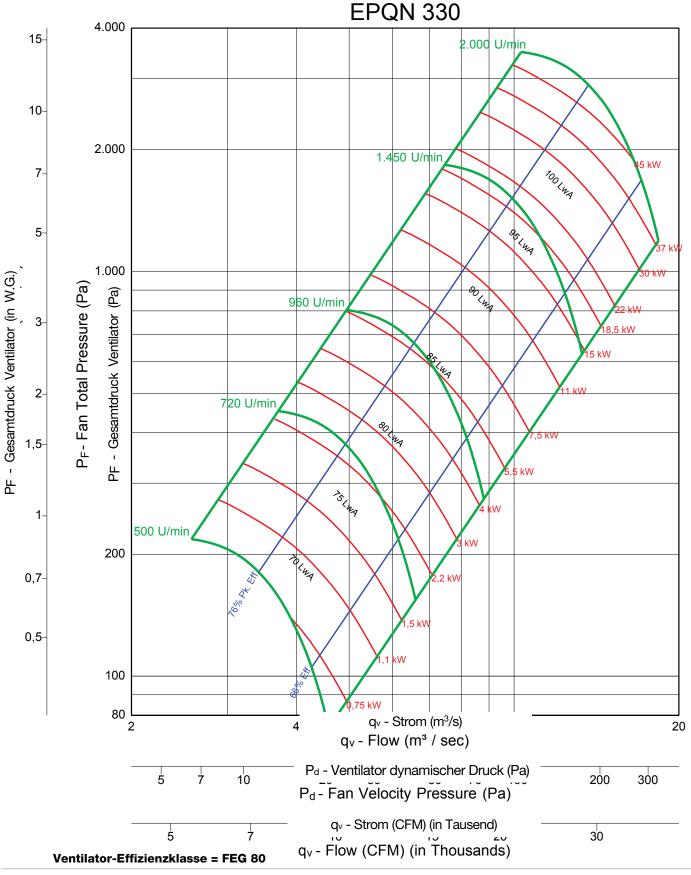
  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





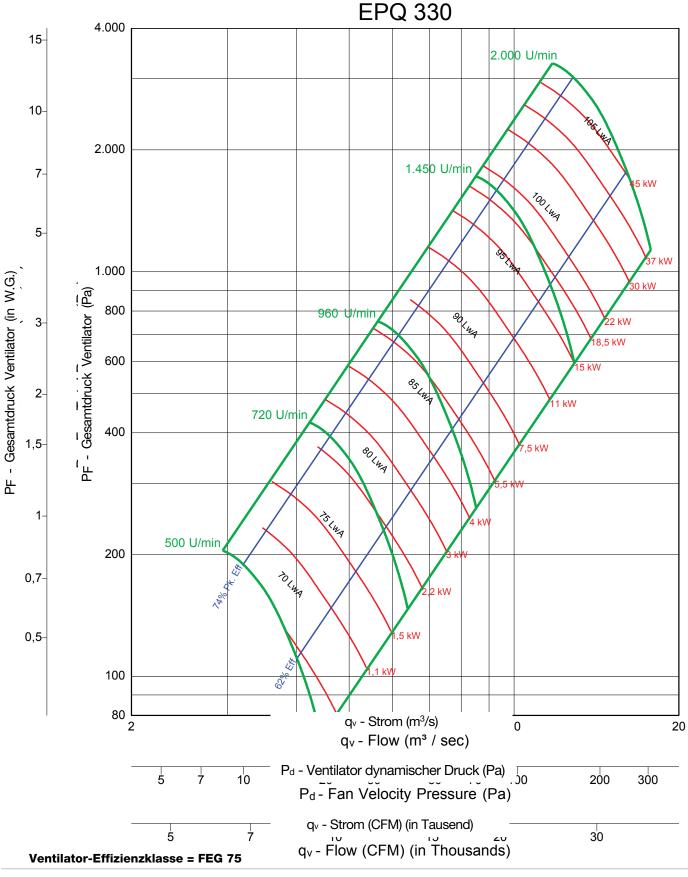

- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



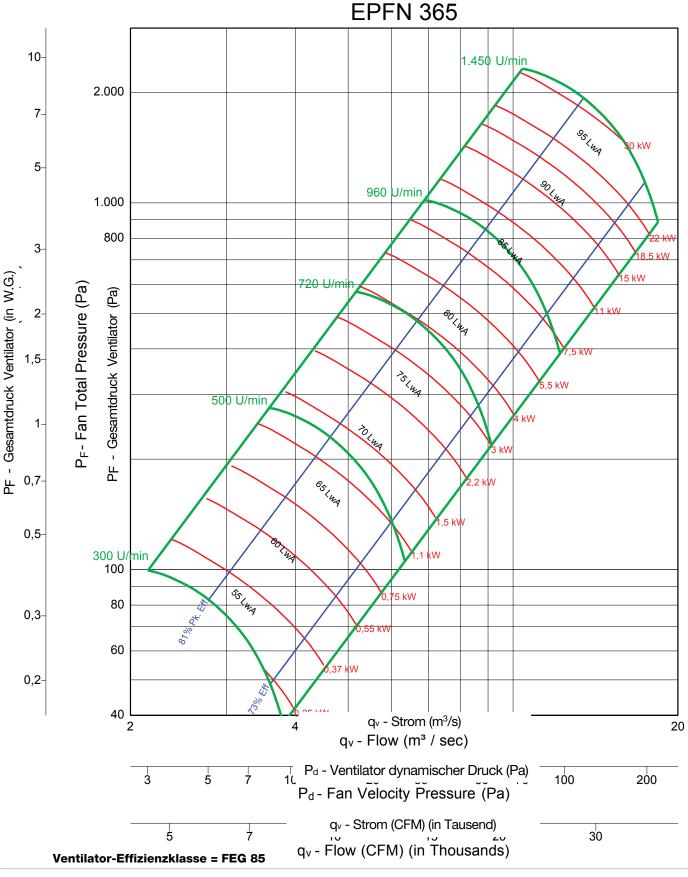



- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

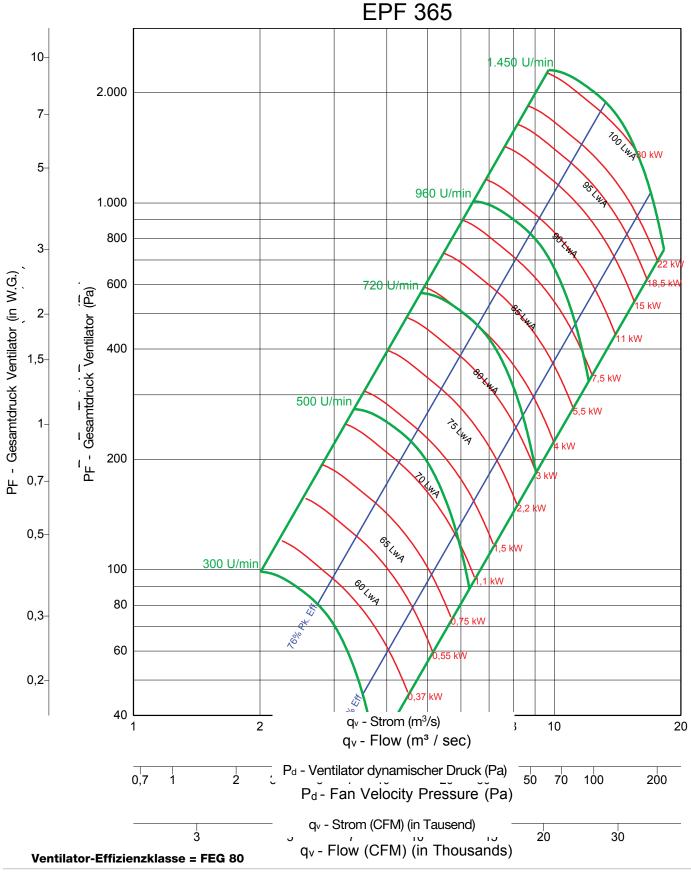





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

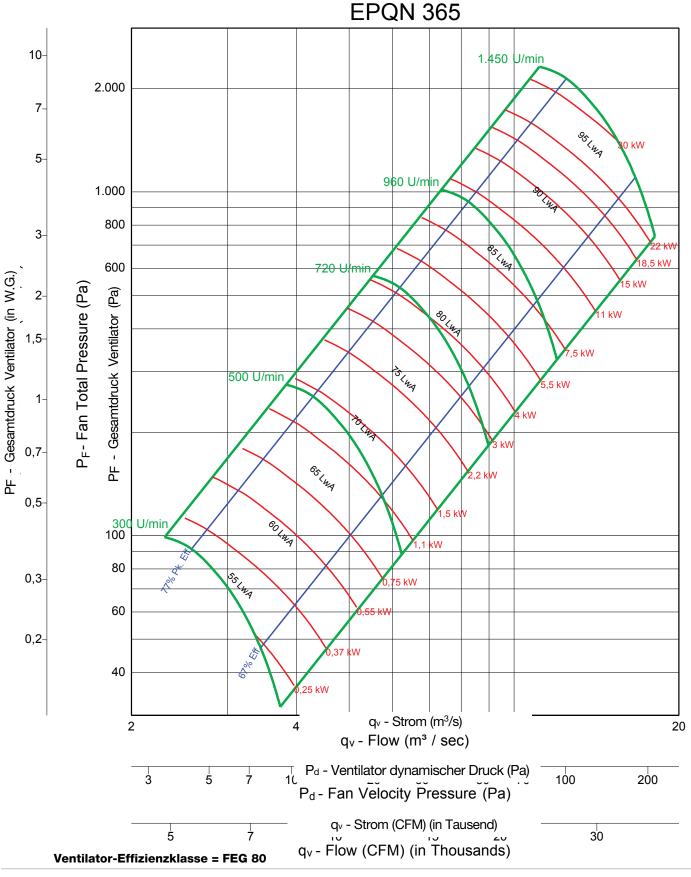





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

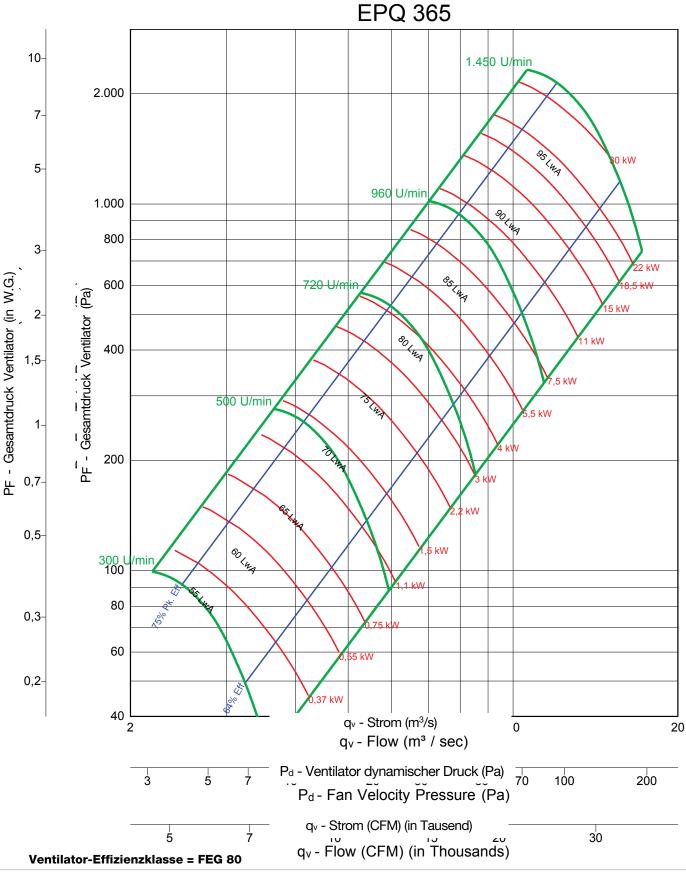





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

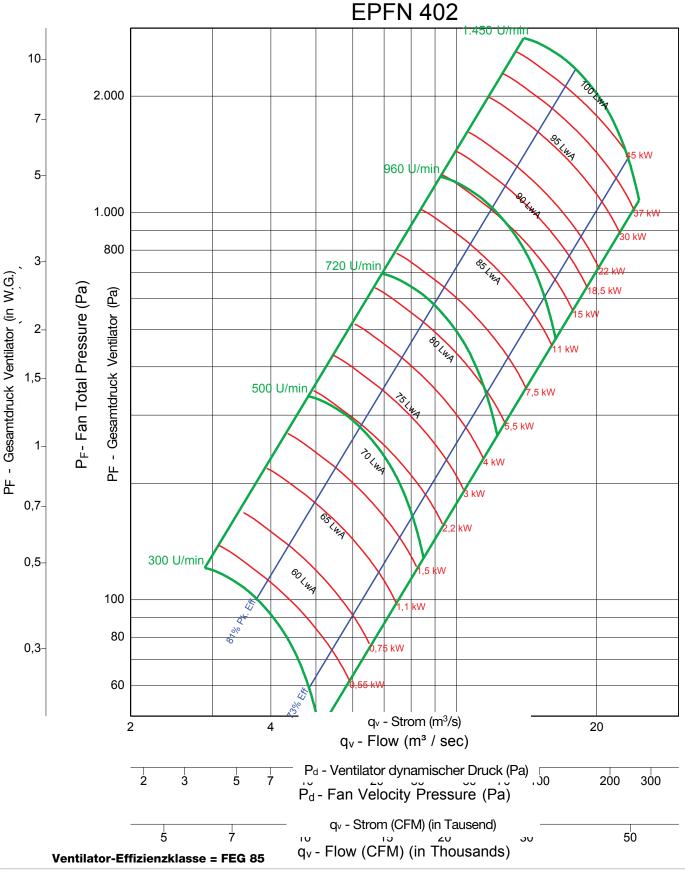
  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



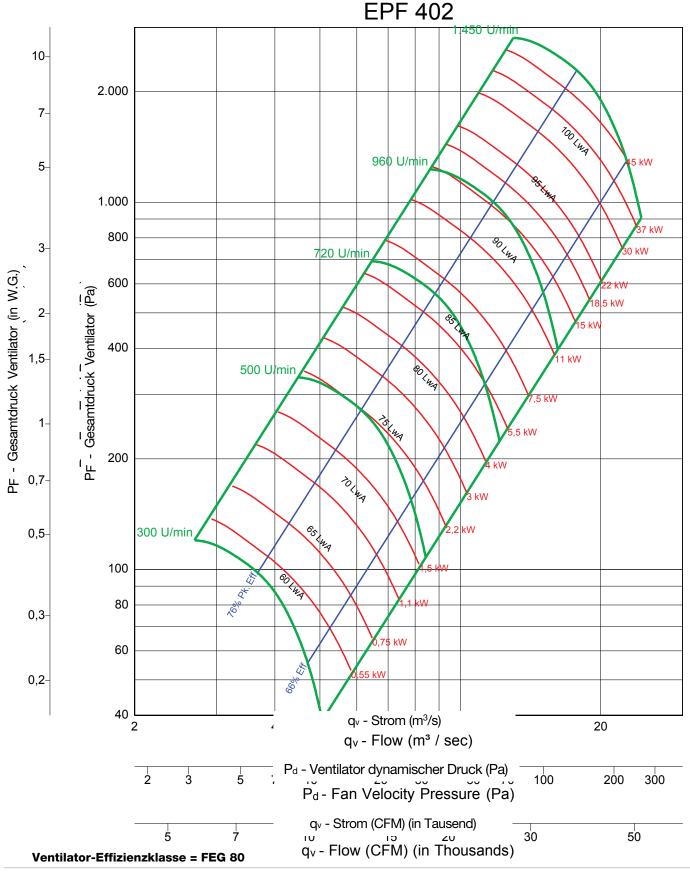



- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.


  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

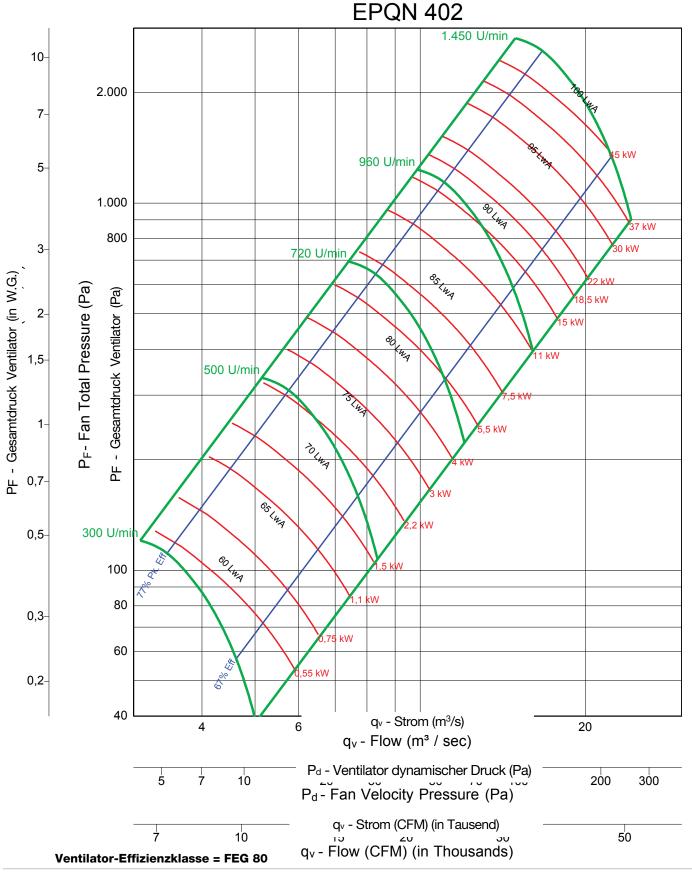
  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





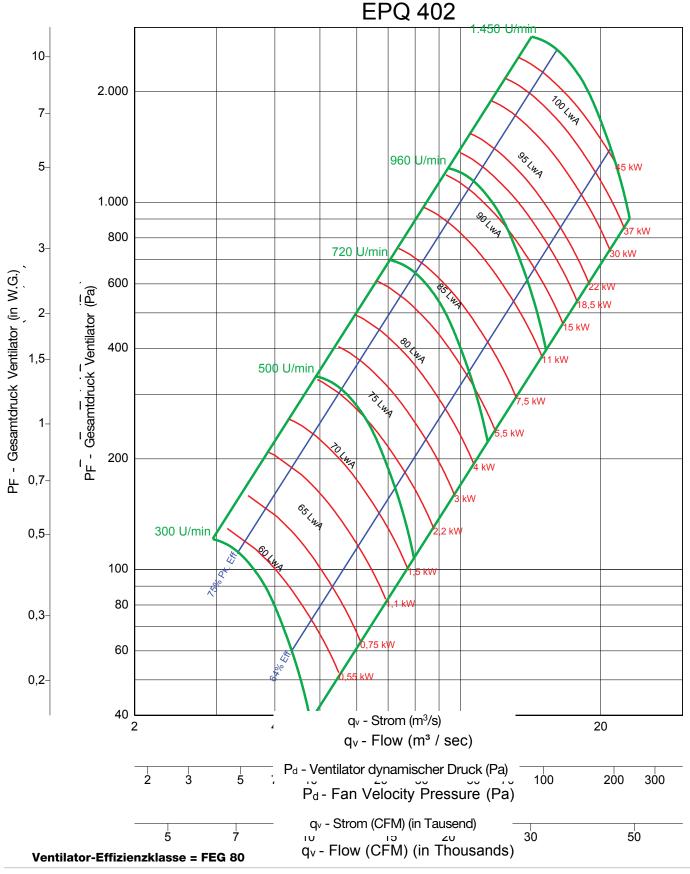

- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





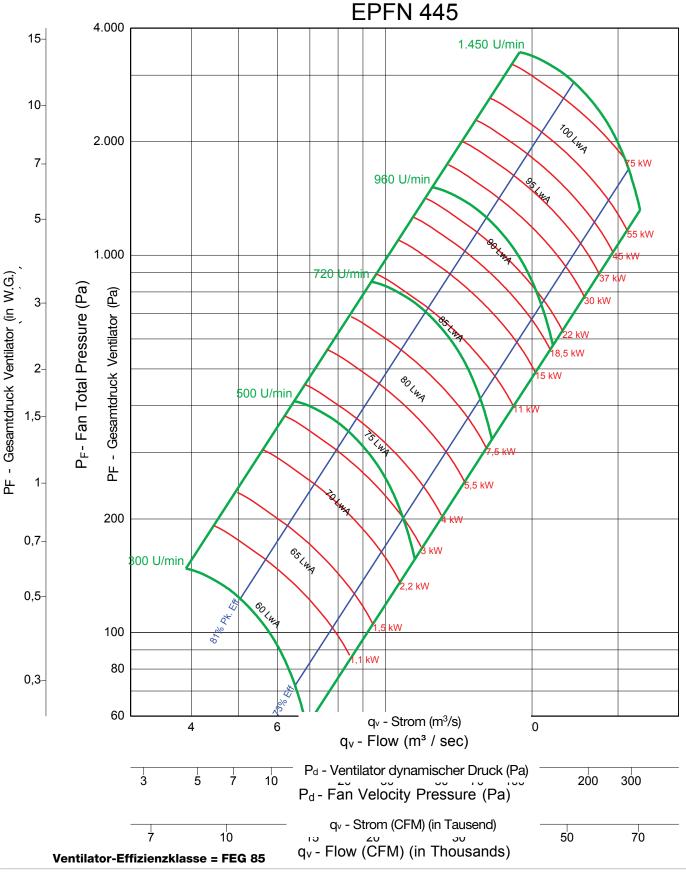

- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





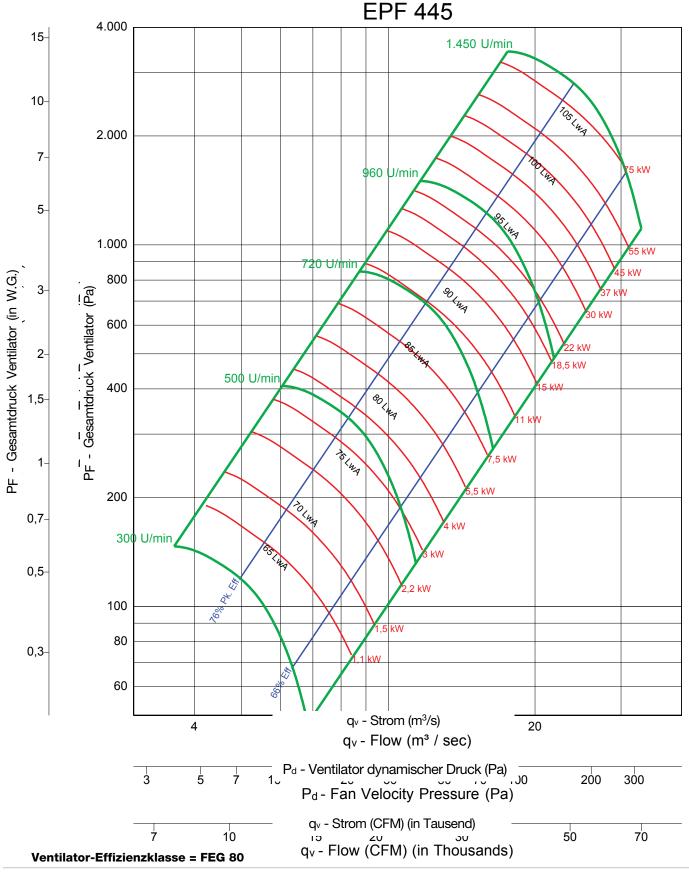

- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





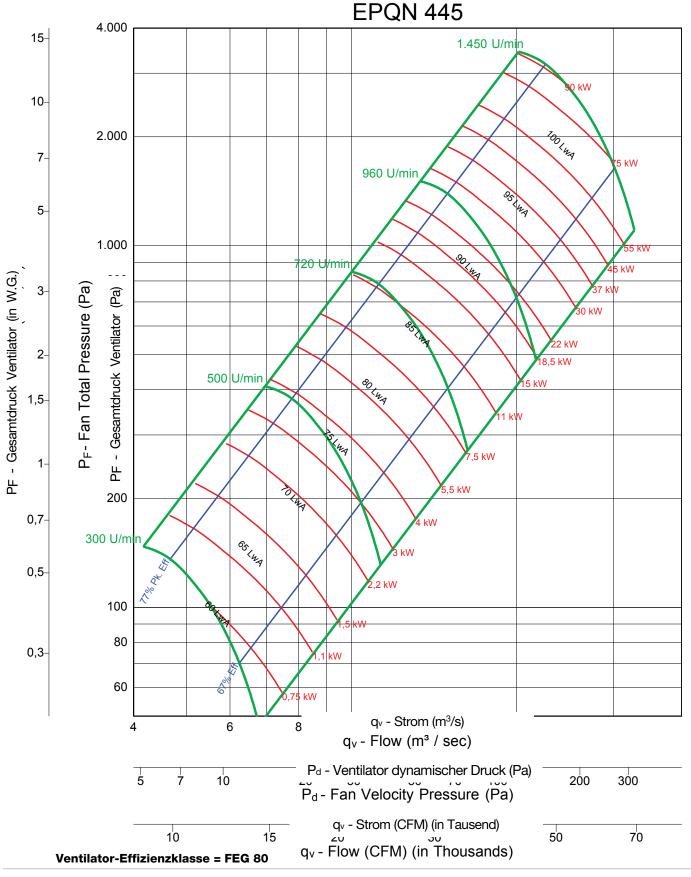

- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





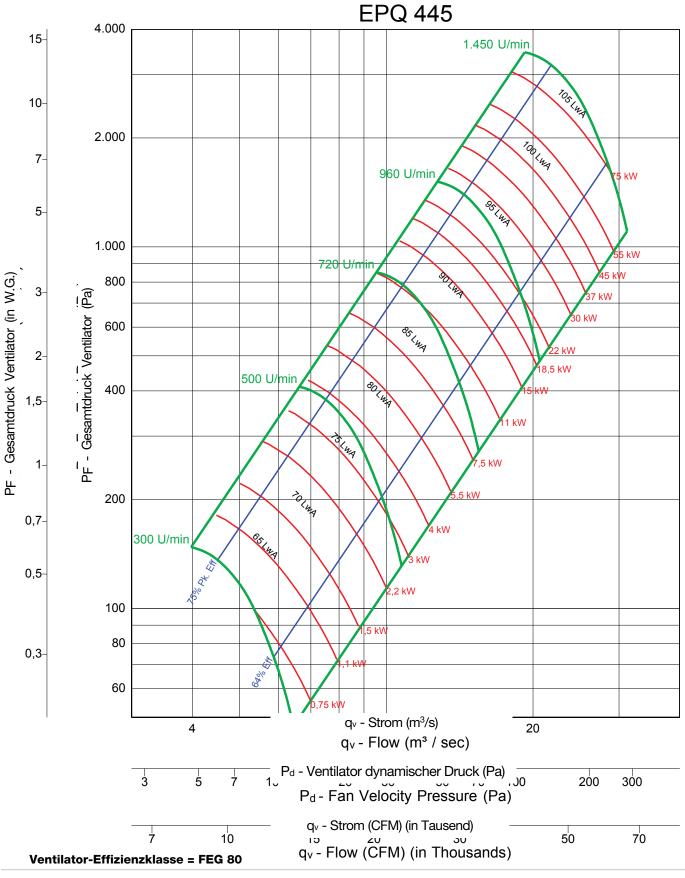

- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





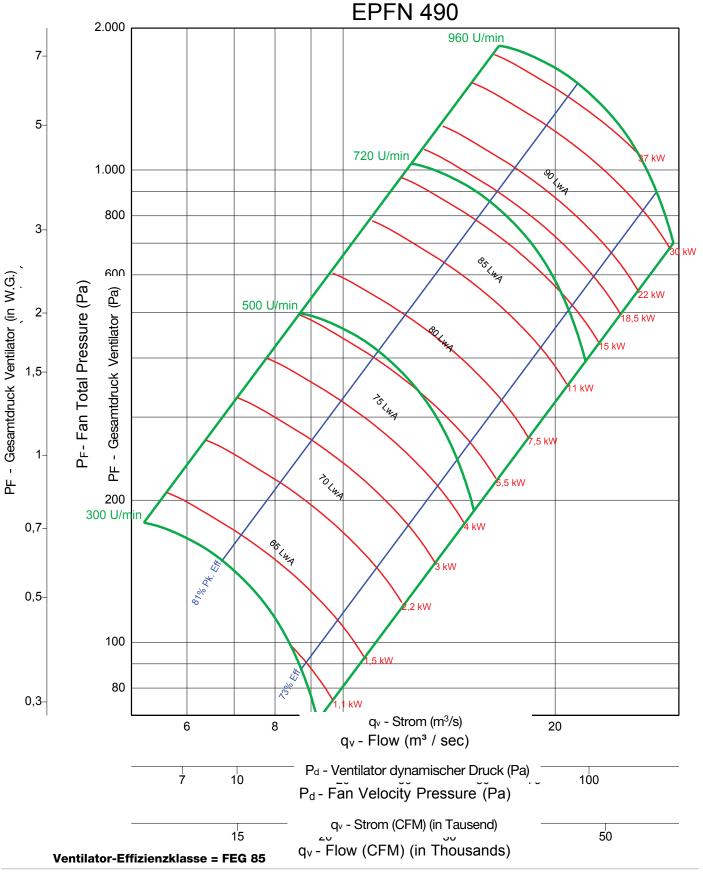

- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





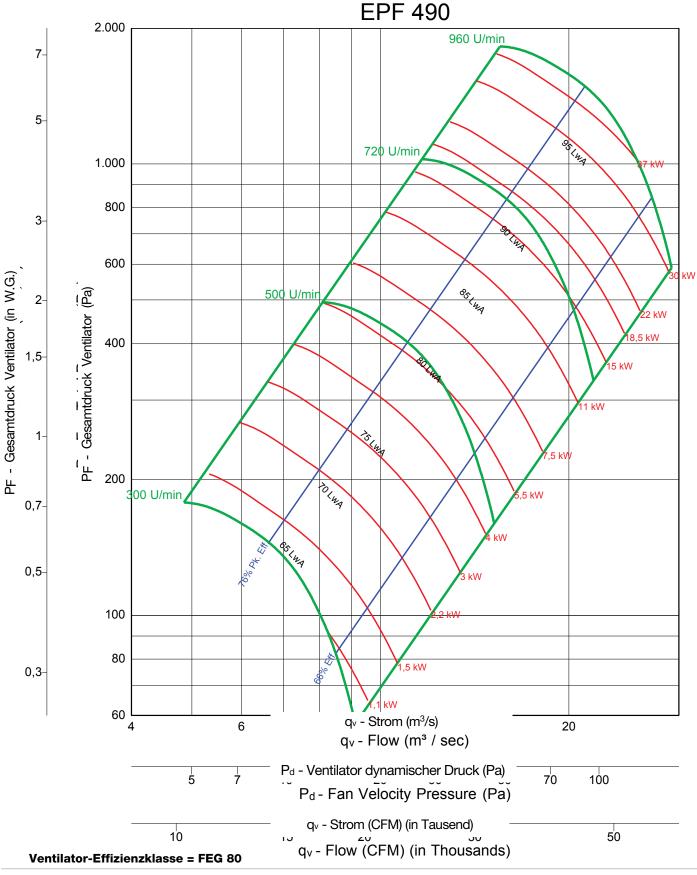

- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





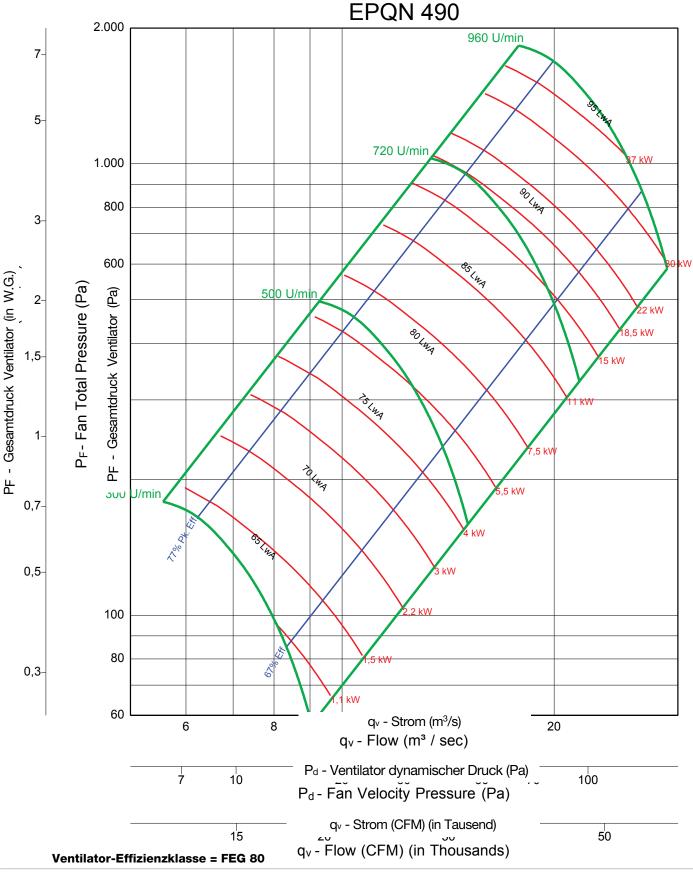

- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





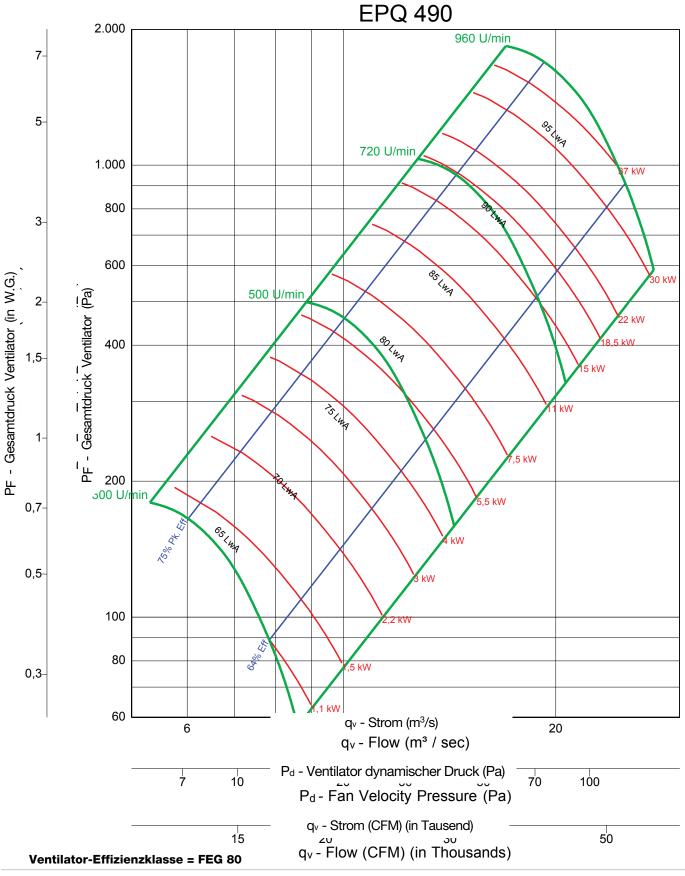

- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





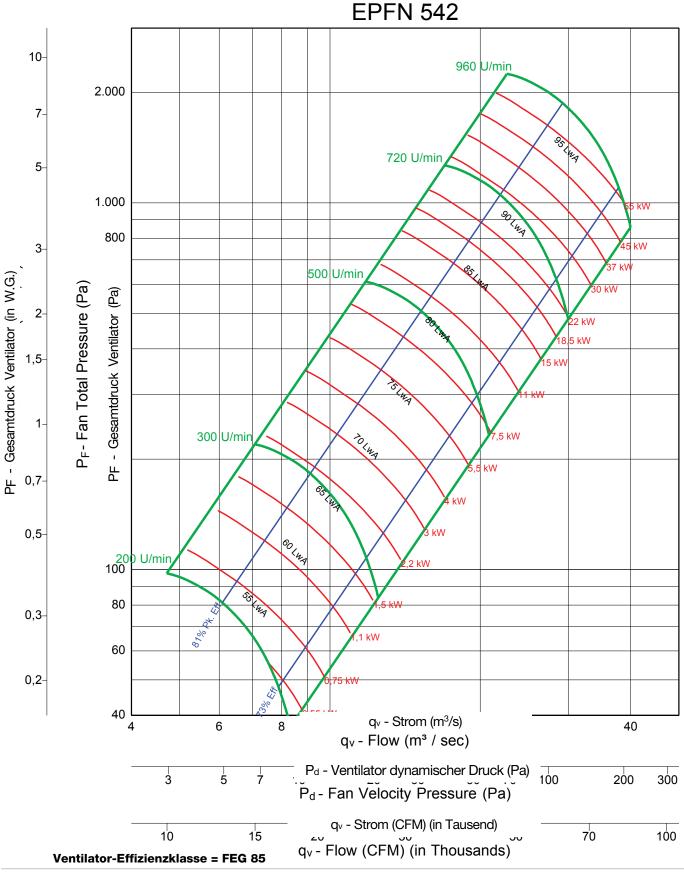

- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



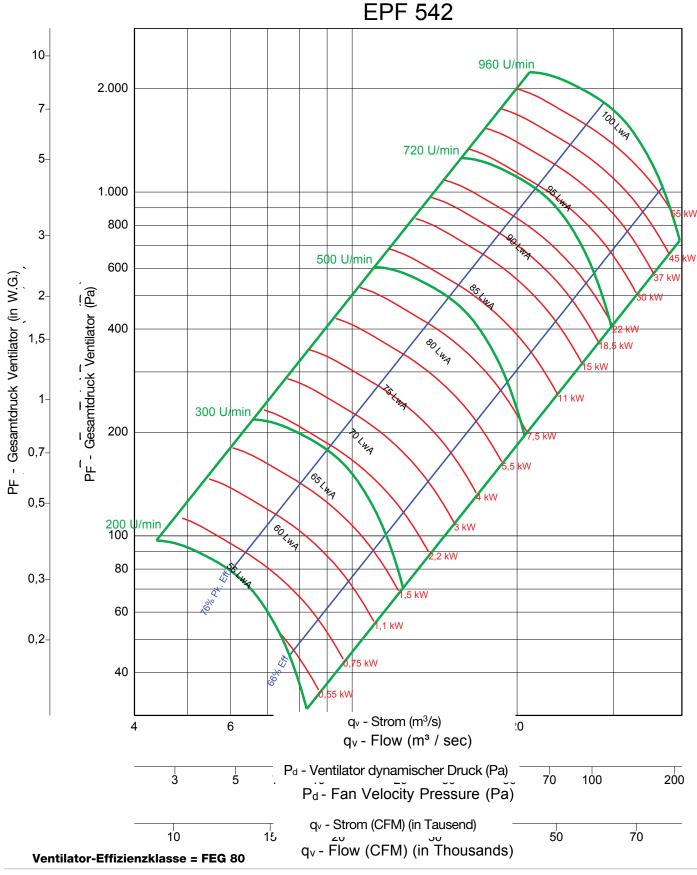



- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



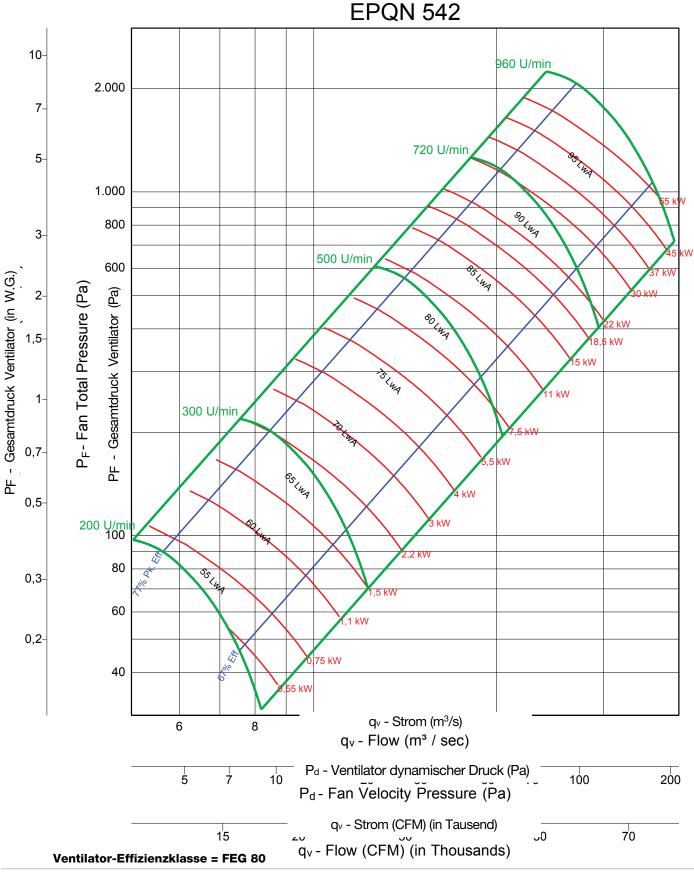


- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

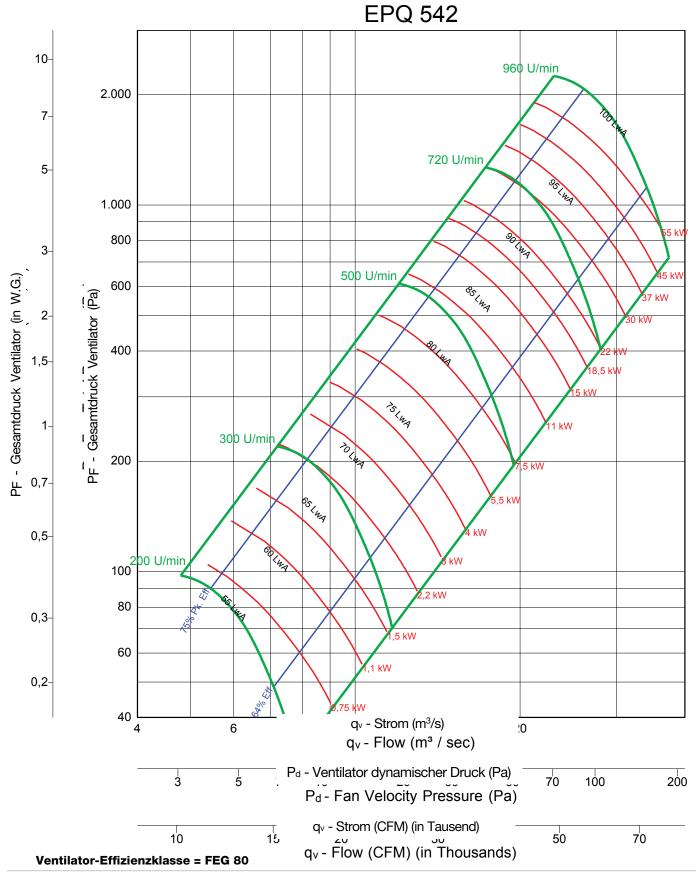

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



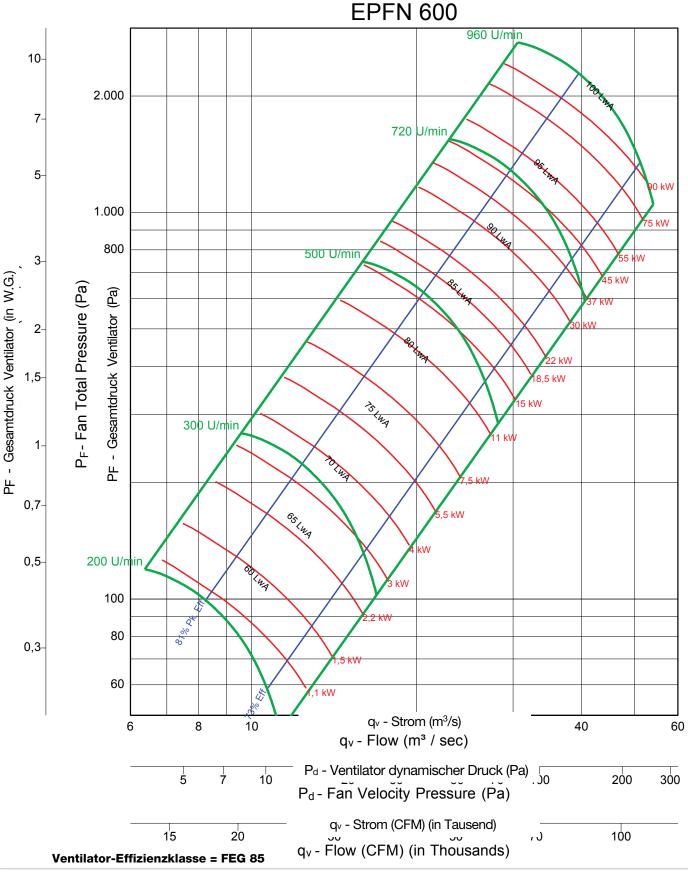


- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

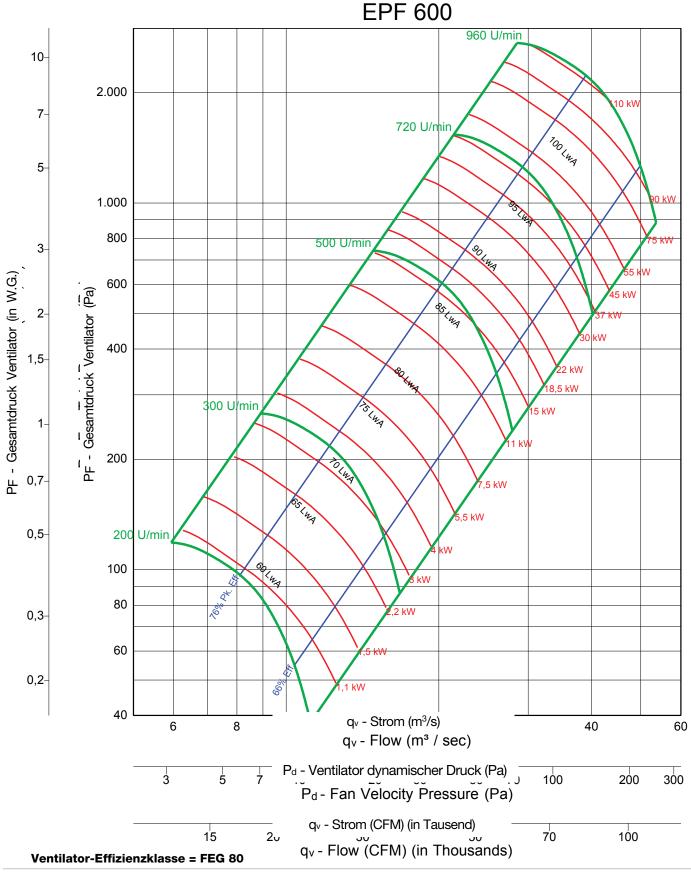

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

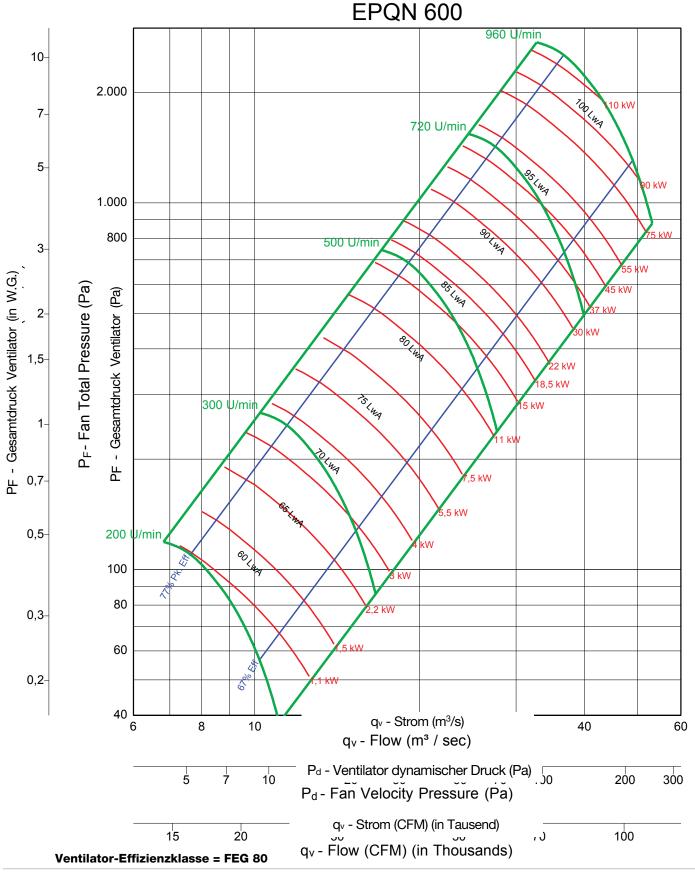





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

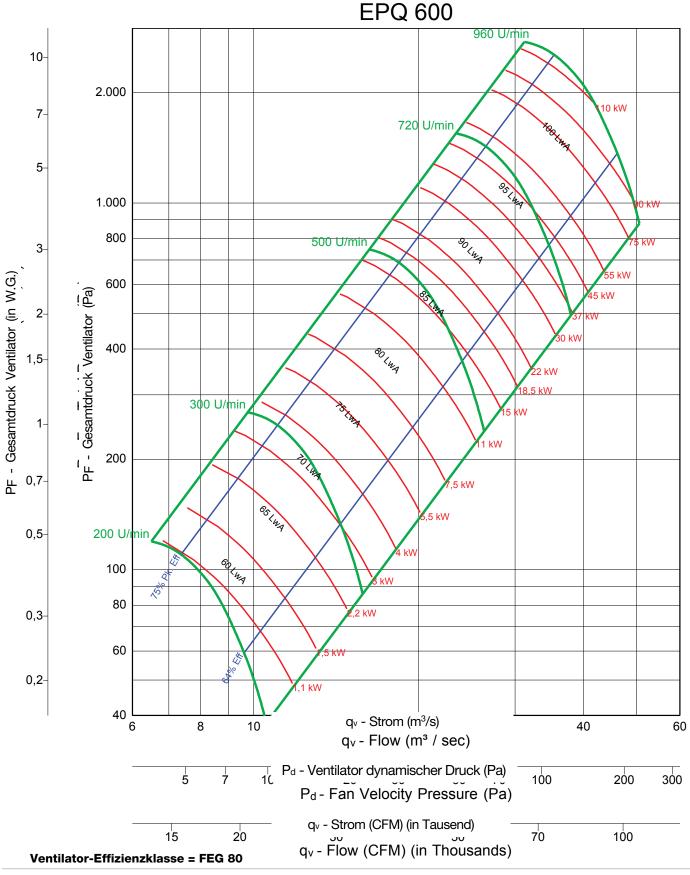





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

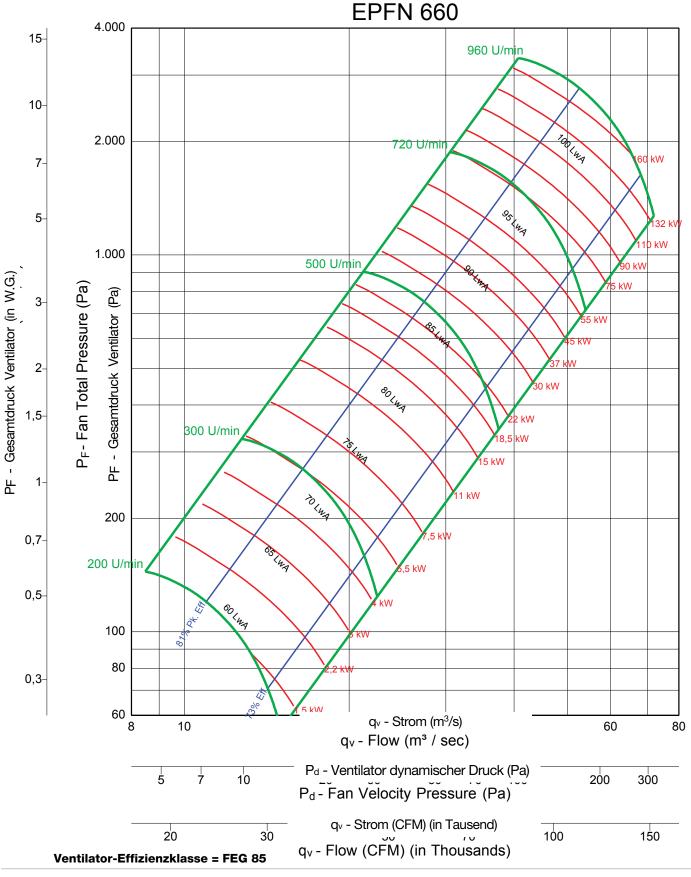





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

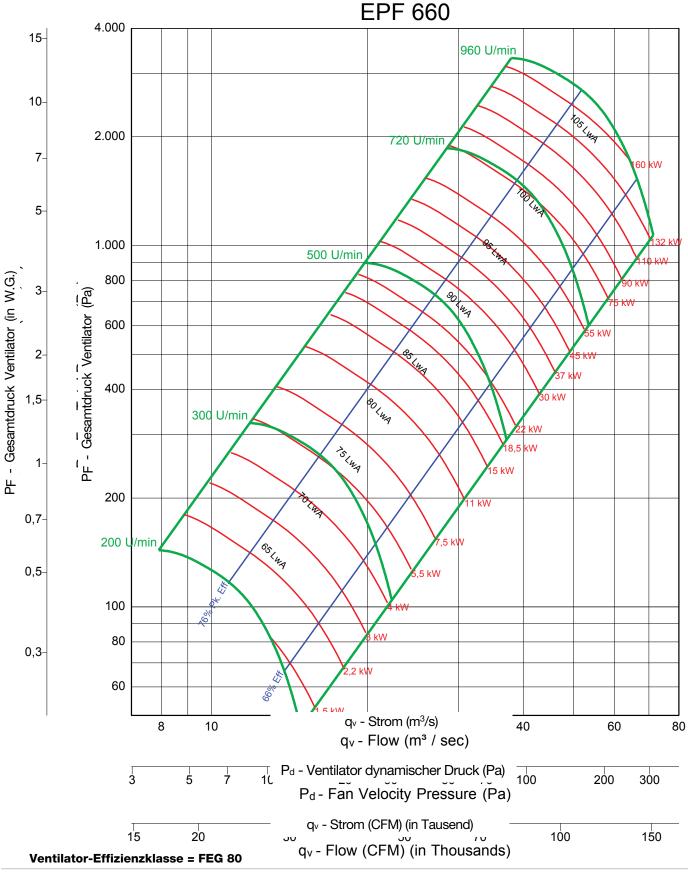
  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

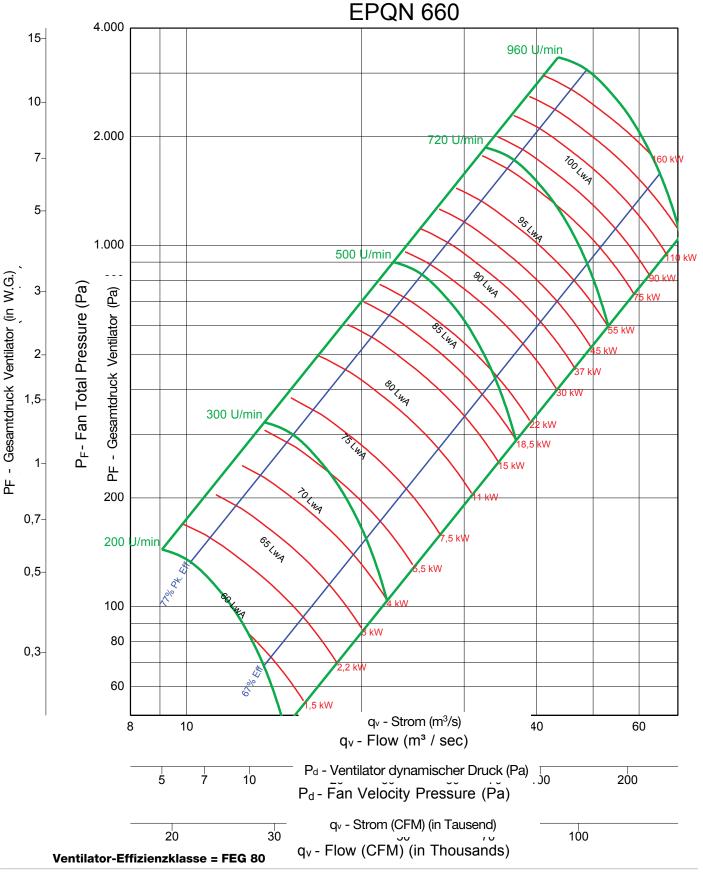

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

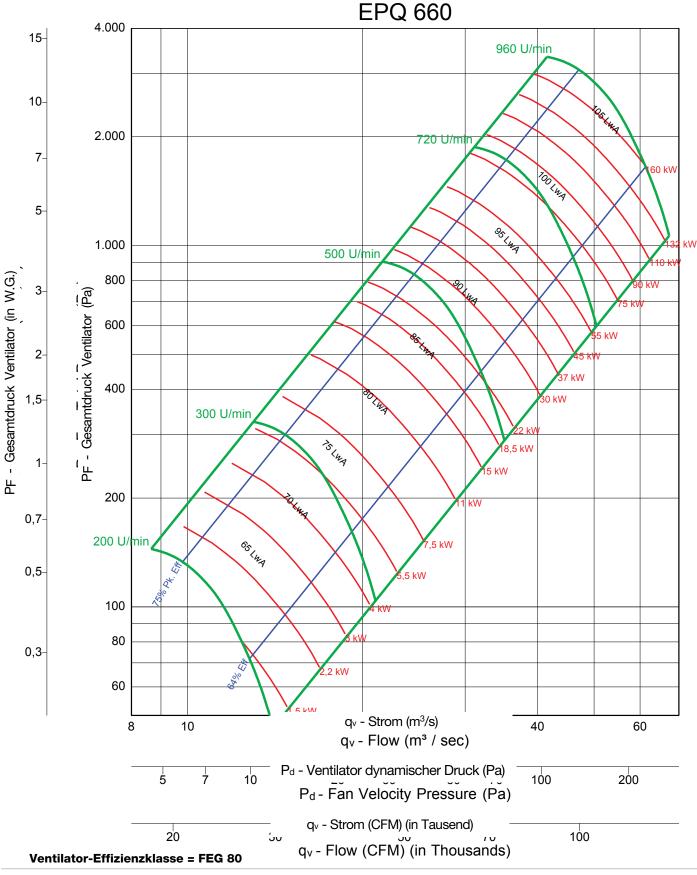





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

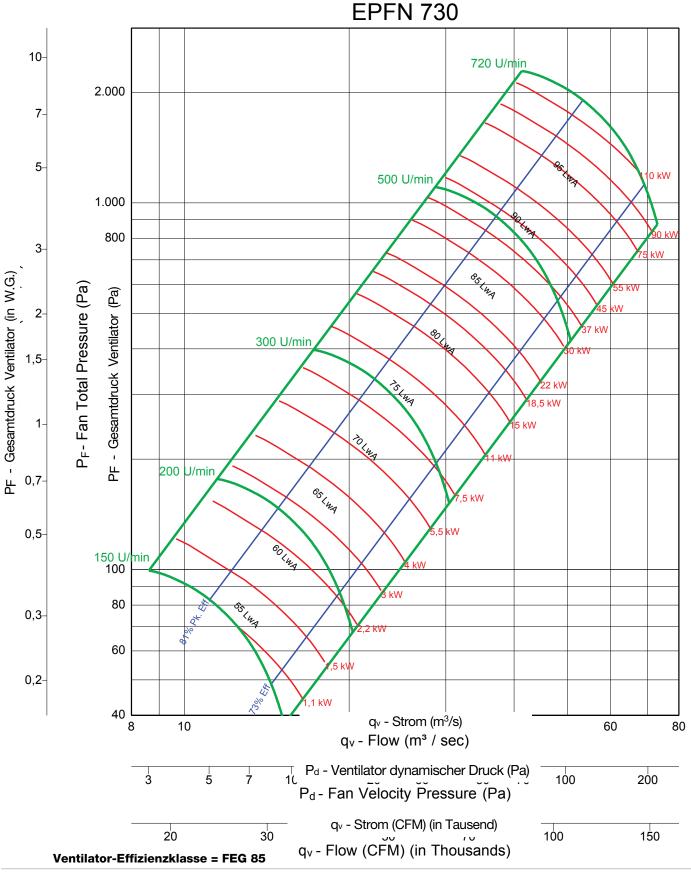
  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

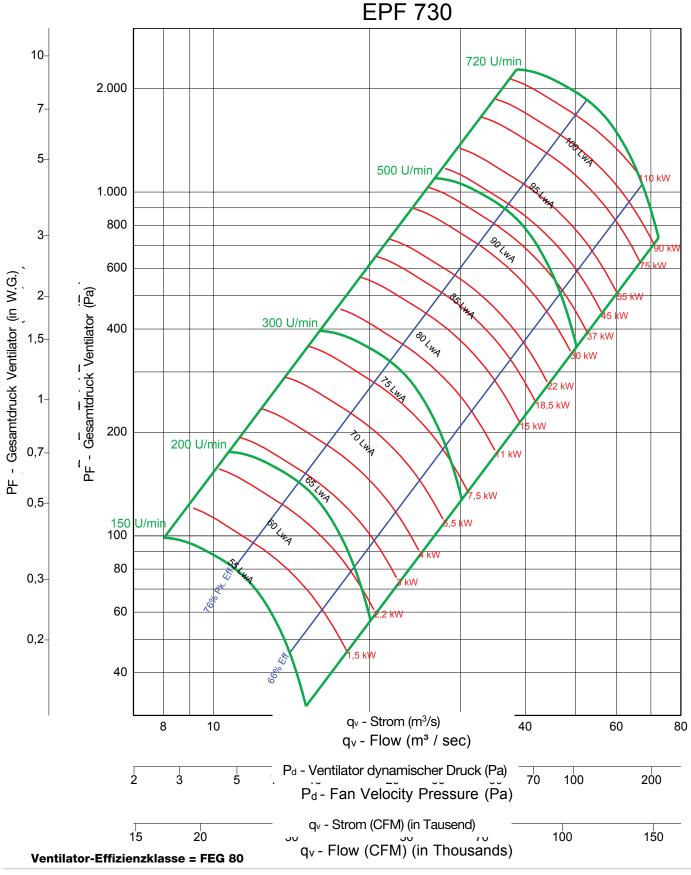

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.



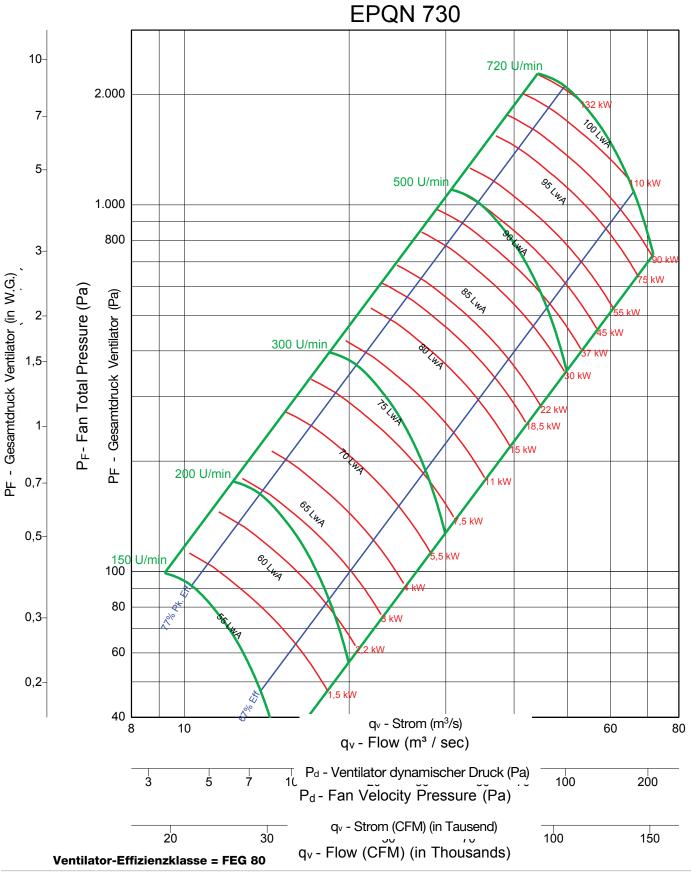


- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

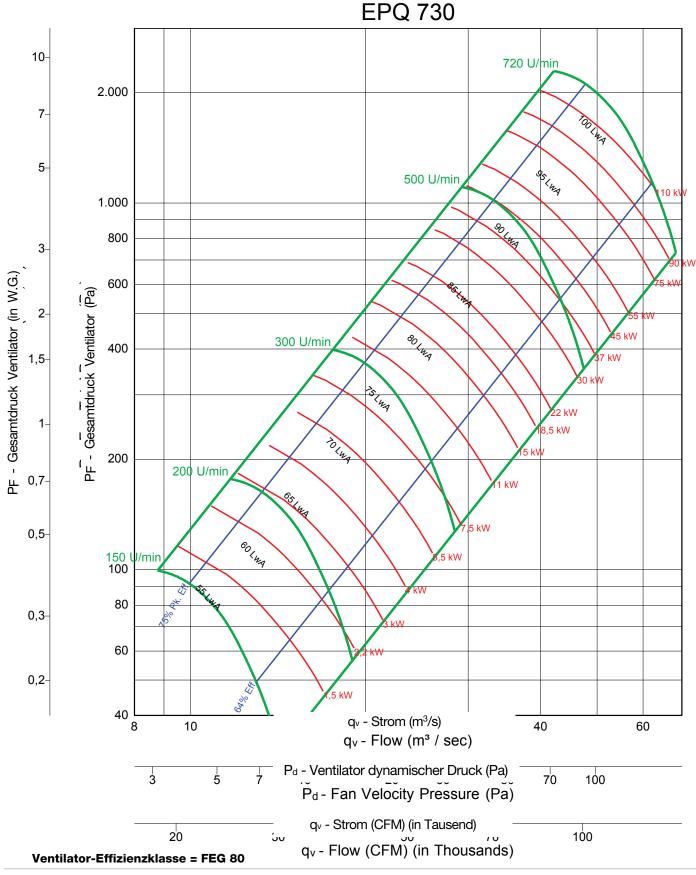

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

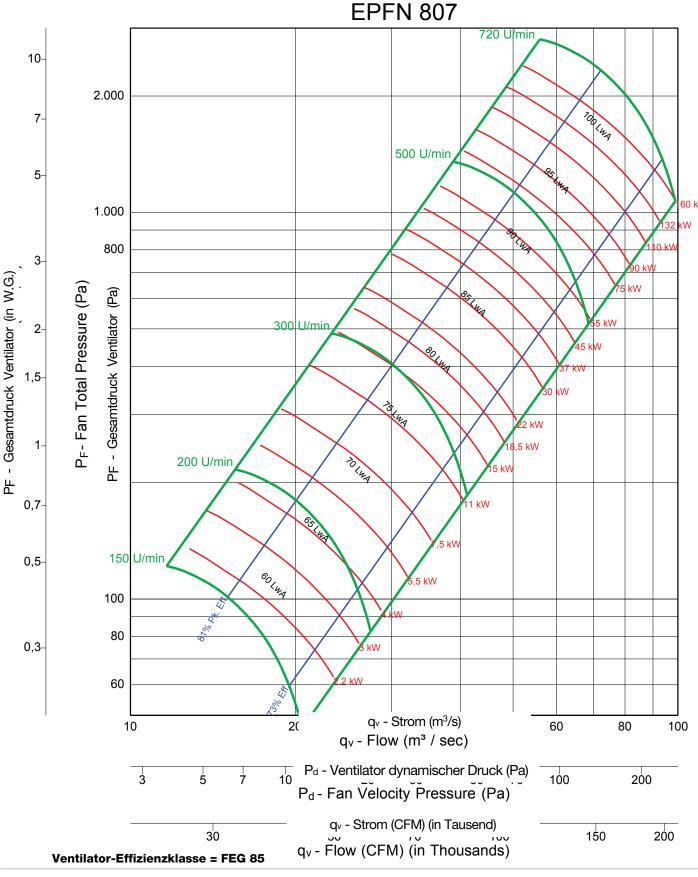





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

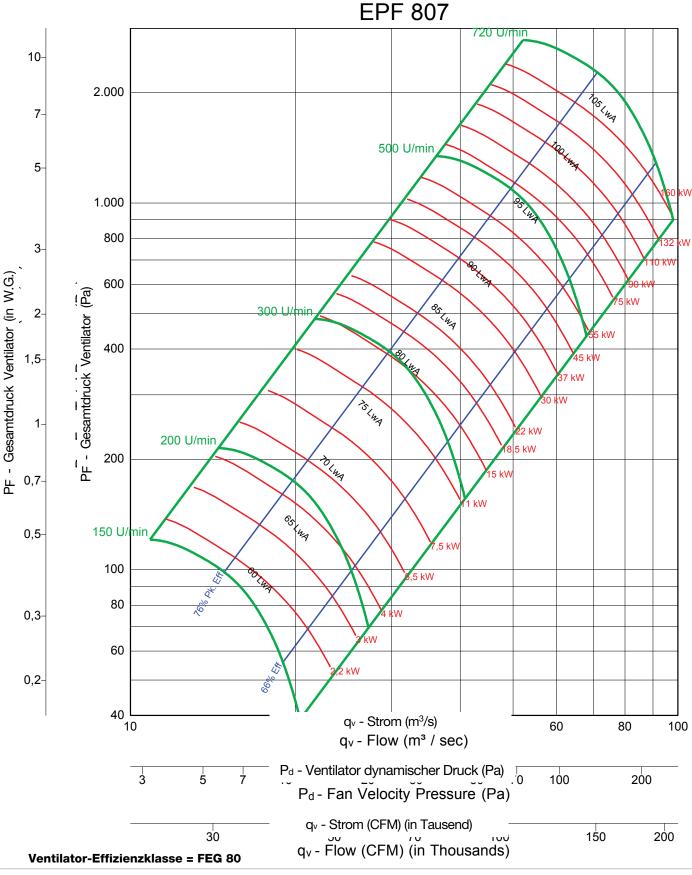





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

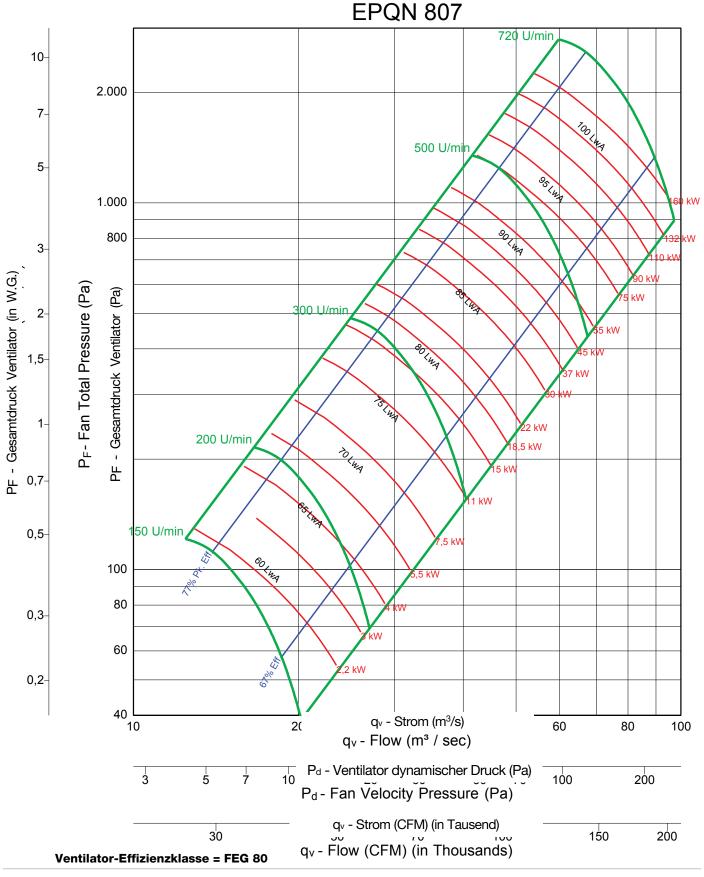





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

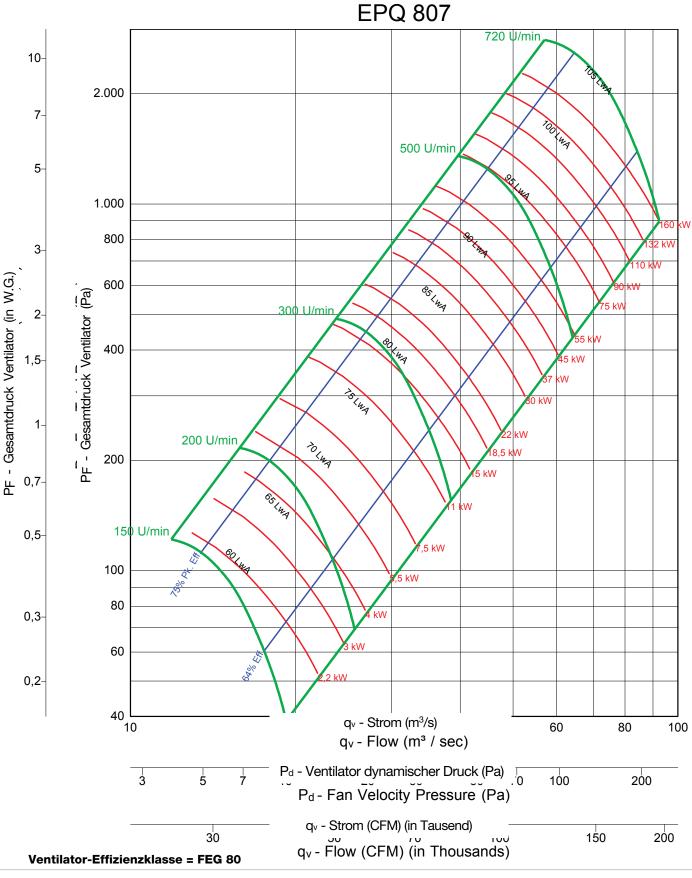





- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

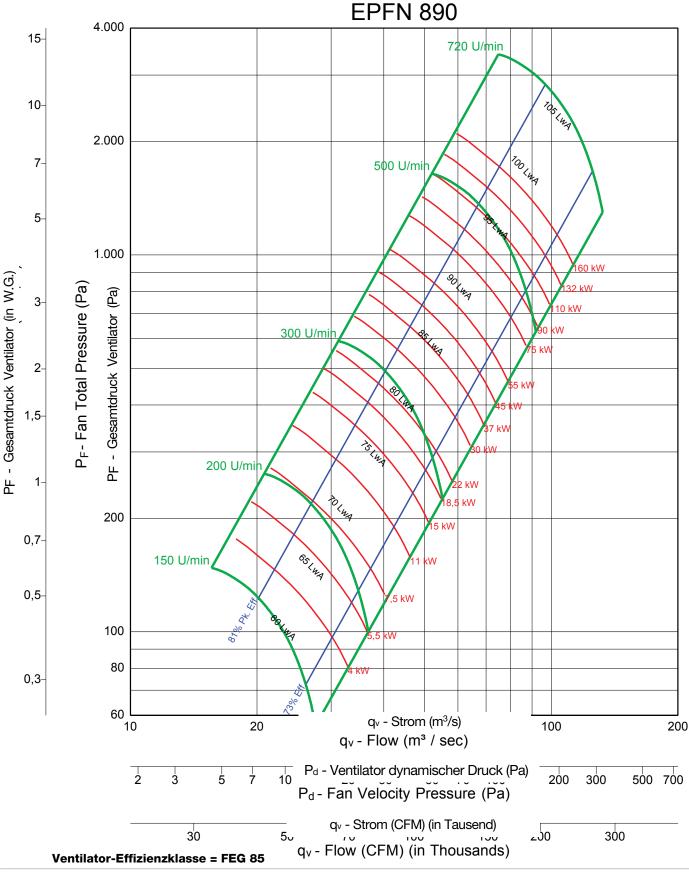





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

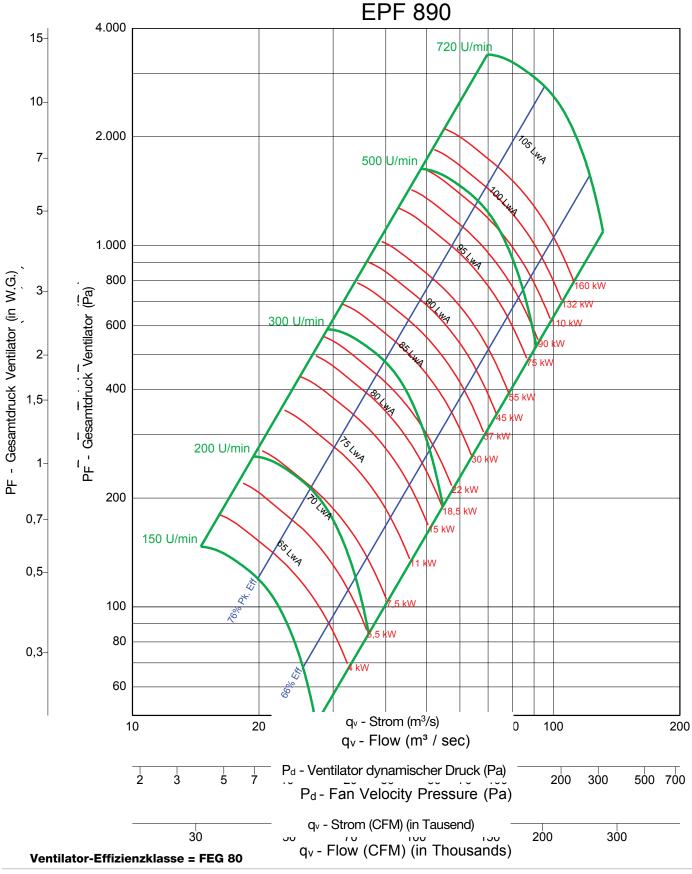





- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

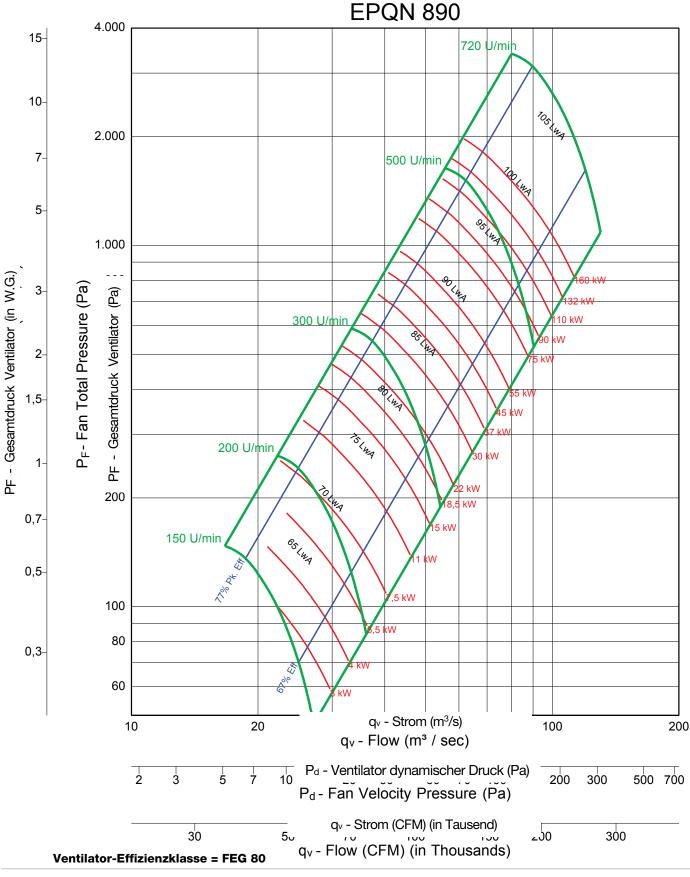
  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

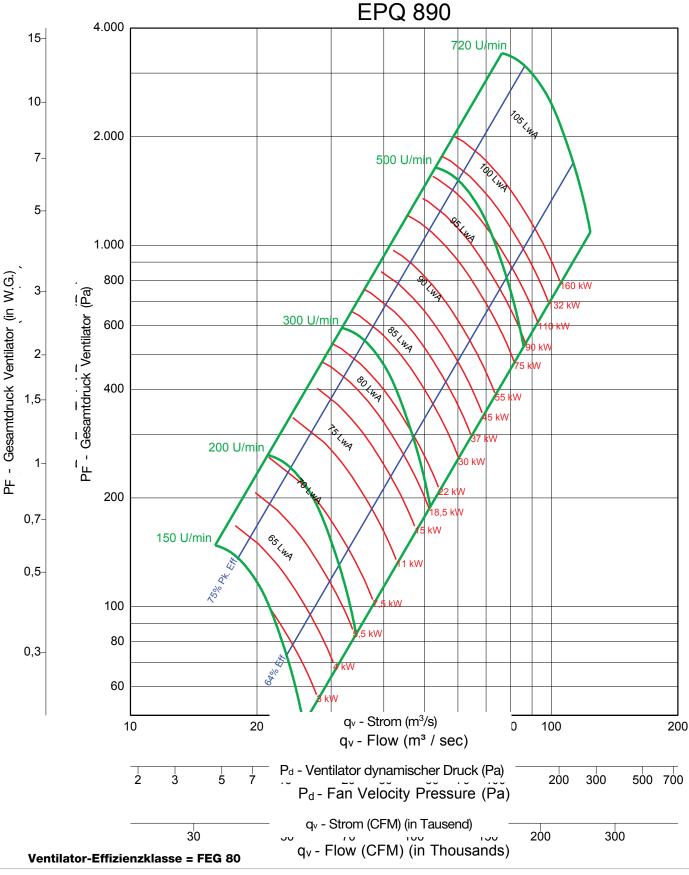

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.

  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.





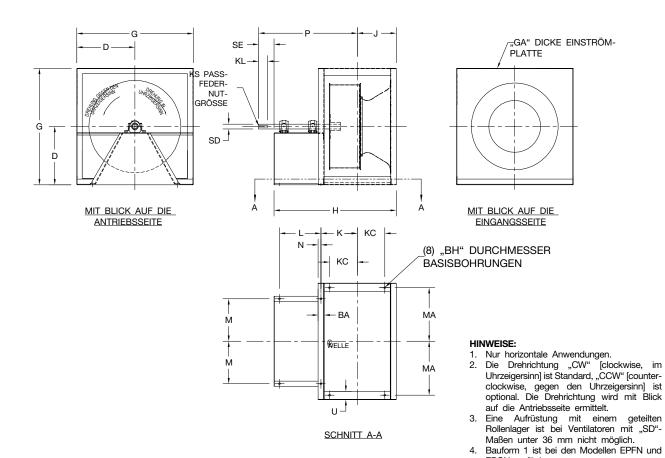
- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
   Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.






- 1. Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
  2. Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- 5. Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.

  6. Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.


  7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

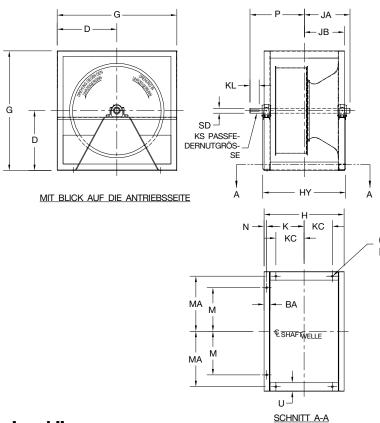


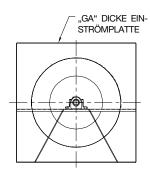


- Die zertifizierte Leistung bezieht sich auf die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Nennleistung (kW) umfasst nicht die Übertragungsverluste.
- 3. Die Nennleistungen beinhalten nicht die Auswirkungen von zusätzlichen Ausrüstungsgegenständen (Zubehör).
- 4. Die dargestellten Bemessungsdaten für die Schallleistungspegel sind in Dezibel angegeben, in Bezug auf 10 E-12 Watt, berechnet gemäß der AMCA-Norm 301.
- Die dargestellten Werte beziehen sich auf die mit A bewerteten Schallleistungspegel (LwiA) des Eingangs für die Installation vom Typ A: Frei liegender Eingang, frei liegender Ausgang.
   Die Bemessungsdaten beinhalten nicht die Auswirkungen einer Korrektur des Endes des Leitungskanals.
- 7. Die dargestellten A-bewerteten Schallleistungspegel wurden gemäß der AMCA-Norm 301 berechnet.

### Horizontal, Bauform 1 - Klasse I und II




| <b>→ !!!</b>       |     |    |      |      |     |      |     |     |     |     | K       | S       |      |      |      |    |      | S   | D     |     |     |
|--------------------|-----|----|------|------|-----|------|-----|-----|-----|-----|---------|---------|------|------|------|----|------|-----|-------|-----|-----|
| AUSSEN-<br>GEHÄUSE | ВА  | ВН | D    | G    | GA  | н    | J   | К   | КС  | KL  | KLI     | KLII    | L    | M    | MA   | N  | Р    | KLI | KL II | SE  | U   |
| 122                | 38  | 21 | 254  | 508  | 2,5 | 581  | 175 | 159 | 102 | 83  | 8 x 7   | 8 x 7   | 200  | 171  | 232  | 16 | 518  | 25  | 30    | 111 | 38  |
| 150                | 38  | 21 | 279  | 559  | 2,5 | 683  | 200 | 184 | 127 | 83  | 8 x 7   | 8 x 7   | 251  | 210  | 257  | 16 | 594  | 25  | 30    | 111 | 38  |
| 165                | 38  | 21 | 305  | 610  | 2,5 | 715  | 216 | 200 | 140 | 83  | 8 x 7   | 8 x 7   | 251  | 222  | 283  | 16 | 610  | 25  | 30    | 111 | 38  |
| 182                | 44  | 21 | 330  | 660  | 2,5 | 784  | 241 | 222 | 133 | 99  | 8 x 7   | 10 x 8  | 273  | 245  | 292  | 19 | 670  | 30  | 38    | 127 | 102 |
| 200                | 57  | 21 | 368  | 737  | 2,5 | 857  | 272 | 246 | 191 | 92  | 10 x 8  | 10 x 8  | 292  | 270  | 330  | 25 | 713  | 38  | 38    | 127 | 102 |
| 222                | 57  | 21 | 406  | 813  | 3   | 962  | 292 | 267 | 203 | 108 | 10 x 8  | 14 x 9  | 356  | 298  | 368  | 25 | 813  | 38  | 45    | 143 | 102 |
| 245                | 64  | 21 | 432  | 864  | 3   | 1051 | 321 | 292 | 191 | 108 | 10 x 8  | 14 x 9  | 391  | 327  | 368  | 29 | 873  | 38  | 45    | 143 | 102 |
| 270                | 64  | 21 | 483  | 965  | 3   | 1153 | 346 | 318 | 203 | 143 | 14 x 9  | 14 x 9  | 441  | 359  | 419  | 29 | 984  | 45  | 50    | 178 | 102 |
| 300                | 76  | 21 | 533  | 1067 | 3   | 1273 | 387 | 353 | 229 | 140 | 14 x 9  | 14 x 9  | 486  | 403  | 445  | 35 | 1064 | 50  | 50    | 178 | 121 |
| 330                | 89  | 21 | 584  | 1168 | 3   | 1394 | 429 | 387 | 273 | 171 | 14 x 9  | 16 x 10 | 530  | 441  | 495  | 41 | 1175 | 50  | 55    | 210 | 121 |
| 365                | 89  | 21 | 648  | 1295 | 5   | 1506 | 465 | 424 | 305 | 171 | 14 x 9  | 18 x 11 | 570  | 480  | 559  | 41 | 1251 | 50  | 65    | 210 | 121 |
| 402                | 89  | 21 | 711  | 1422 | 5   | 1630 | 502 | 461 | 343 | 171 | 16 x 10 | 18 x 11 | 621  | 530  | 622  | 41 | 1338 | 55  | 65    | 210 | 121 |
| 445                | 102 | 21 | 787  | 1575 | 5   | 1799 | 554 | 506 | 402 | 165 | 18 x 11 | 20 x 12 | 691  | 581  | 673  | 48 | 1454 | 65  | 70    | 210 | 152 |
| 490                | 102 | 21 | 864  | 1727 | 5   | 1938 | 598 | 551 | 446 | 165 | 20 x 12 | 20 x 12 | 741  | 645  | 749  | 48 | 1549 | 70  | 75    | 210 | 152 |
| 542                | 102 | 21 | 965  | 1930 | 5   | 2065 | 649 | 602 | 497 | 162 | 20 x 12 | 25 x 14 | 767  | 702  | 851  | 48 | 1626 | 75  | 90    | 210 | 152 |
| 600                | 127 | 21 | 965  | 1930 | 6   | 2283 | 732 | 672 | 554 | 168 | 20 x 12 | 25 x 14 | 832  | 778  | 851  | 60 | 1767 | 75  | 90    | 216 | 152 |
| 660                | 127 | 21 | 1035 | 2070 | 6   | 2477 | 791 | 730 | 613 | 168 | 25 x 14 | 28 x 16 | 908  | 842  | 921  | 60 | 1905 | 90  | 100   | 219 | 152 |
| 730                | 127 | 21 | 1168 | 2337 | 6   | 2686 | 857 | 797 | 679 | 168 | 25 x 14 | 28 x 16 | 984  | 943  | 1054 | 60 | 2048 | 90  | 100   | 219 | 152 |
| 807                | 127 | 21 | 1295 | 2591 | 6   | 2912 | 932 | 871 | 754 | 156 | 28 x 16 | 32 x 18 | 1060 | 1038 | 1181 | 60 | 2189 | 100 | 115   | 210 | 152 |


ABMESSUNGEN IN (mm) SOFERN NICHT ANDERS ANGEGEBEN. ÄNDERUNGEN VORBEHALTEN. ZERTIFIZIERTE ZEICHNUNGEN STEHEN AUF ANFRAGE ZUR VERFÜGUNG.



EPQN verfügbar.

# Horizontal, Bauform 3 - Klasse I, II und III





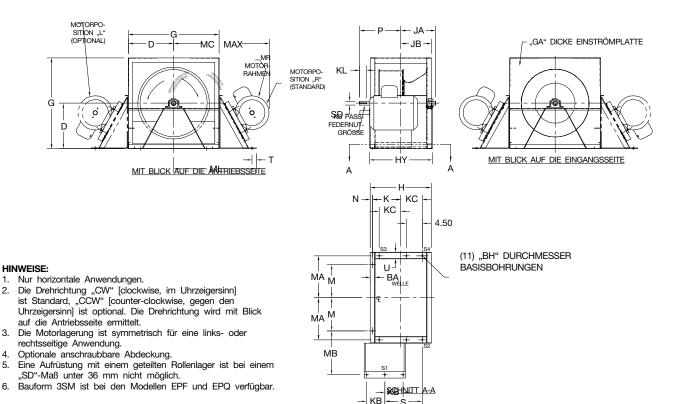
MIT BLICK AUF DIE EINGANGSSEITE

(6) "BH" DURCHMESSER BASISBOHRUNGEN

### HINWEISE:

- 1. Nur horizontale Anwendungen.
- Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counter-clockwise, gegen den Uhrzeigersinn] ist optional. Die Drehrichtung wird mit Blick auf die Antriebsseite ermittelt.
- Eine Aufrüstung mit einem geteilten Rollenlager ist bei Ventilatoren mit "SD"-Maßen unter 36 mm nicht möglich.
   Bauform 3 ist bei den Modellen EPF und EPQ verfügbar.
- Wellendurchmesser ("SD") bei Größe 730, Klasse III ist von 112 mm reduziert
- Wellendurchmesser ("SD") bei Größe 807, Klasse III ist von 125 mm reduziert

### Klasse I und II

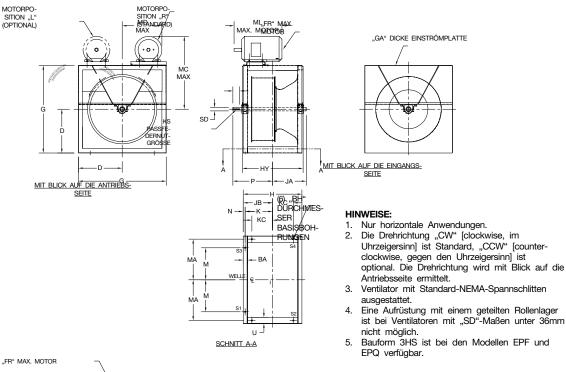

| EN-              |     |    |      |      |     |      | Н    | Υ     | J   | A     |     |     |     |     | K       | S       |      |      |    | F    |      | S   | D     |     |
|------------------|-----|----|------|------|-----|------|------|-------|-----|-------|-----|-----|-----|-----|---------|---------|------|------|----|------|------|-----|-------|-----|
| AUSSEN<br>GEHÄUS | ВА  | вн | D    | G    | GA  | Н    | KLI  | KL II | KLI | KL II | JB  | K   | KC  | KL  | KLI     | KL II   | M    | MA   | N  | KLI  | KLII | KLI | KL II | U   |
| 122              | 38  | 21 | 254  | 508  | 2,5 | 349  | 406  | 406   | 197 | 200   | 175 | 159 | 102 | 60  | 8 x 7   | 8 x 7   | 171  | 232  | 16 | 283  | 283  | 25  | 30    | 38  |
| 150              | 38  | 21 | 279  | 559  | 2,5 | 400  | 457  | 457   | 222 | 226   | 200 | 184 | 127 | 86  | 8 x 7   | 8 x 7   | 210  | 257  | 16 | 334  | 334  | 25  | 30    | 38  |
| 165              | 38  | 21 | 305  | 610  | 2,5 | 432  | 489  | 489   | 238 | 241   | 216 | 200 | 140 | 86  | 8 x 7   | 8 x 7   | 222  | 283  | 16 | 349  | 349  | 25  | 30    | 38  |
| 182              | 44  | 21 | 330  | 660  | 2,5 | 483  | 527  | 527   | 260 | 262   | 241 | 222 | 133 | 76  | 8 x 7   | 10 x 8  | 245  | 292  | 19 | 359  | 383  | 30  | 38    | 102 |
| 200              | 57  | 21 | 368  | 737  | 2,5 | 543  | 562  | 588   | 278 | 286   | 272 | 246 | 191 | 76  | 8 x 7   | 10 x 8  | 270  | 330  | 25 | 376  | 400  | 30  | 38    | 102 |
| 222              | 57  | 21 | 406  | 813  | 3   | 584  | 603  | 629   | 302 | 310   | 292 | 267 | 203 | 102 | 10 x 8  | 14 x 9  | 298  | 368  | 25 | 446  | 449  | 38  | 45    | 102 |
| 245              | 64  | 21 | 432  | 864  | 3   | 641  | 648  | 673   | 324 | 332   | 321 | 292 | 191 | 89  | 10 x 8  | 14 x 9  | 327  | 368  | 29 | 456  | 459  | 38  | 50    | 102 |
| 270              | 64  | 21 | 483  | 965  | 3   | 692  | 699  | 724   | 349 | 357   | 346 | 318 | 203 | 89  | 10 x 8  | 14 x 9  | 359  | 419  | 29 | 481  | 484  | 38  | 50    | 102 |
| 300              | 76  | 21 | 533  | 1067 | 3   | 775  | 781  | 781   | 386 | 389   | 387 | 353 | 229 | 114 | 14 x 9  | 14 x 9  | 403  | 445  | 35 | 538  | 546  | 45  | 50    | 121 |
| 330              | 89  | 21 | 584  | 1168 | 3   | 857  | 864  | 864   | 421 | 424   | 429 | 387 | 273 | 114 | 14 x 9  | 14 x 9  | 441  | 495  | 41 | 570  | 575  | 45  | 50    | 121 |
| 365              | 89  | 21 | 648  | 1295 | 5   | 930  | 940  | 965   | 459 | 471   | 465 | 424 | 305 | 121 | 14 x 9  | 18 x 11 | 480  | 559  | 41 | 613  | 629  | 50  | 60    | 121 |
| 402              | 89  | 21 | 711  | 1422 | 5   | 1003 | 1013 | 1038  | 497 | 508   | 502 | 461 | 343 | 140 | 14 x 9  | 18 x 11 | 530  | 622  | 41 | 675  | 684  | 50  | 60    | 121 |
| 445              | 102 | 21 | 787  | 1575 | 5   | 1108 | 1118 | 1118  | 548 | 552   | 554 | 506 | 402 | 140 | 18 x 11 | 18 x 11 | 581  | 673  | 48 | 724  | 732  | 60  | 65    | 152 |
| 490              | 102 | 21 | 864  | 1727 | 5   | 1197 | 1207 | 1207  | 592 | 598   | 598 | 551 | 446 | 140 | 18 x 11 | 20 x 12 | 645  | 749  | 48 | 768  | 784  | 60  | 70    | 152 |
| 542              | 102 | 21 | 965  | 1930 | 5   | 1299 | 1308 | 1359  | 643 | 662   | 649 | 602 | 497 | 168 | 18 x 11 | 20 x 12 | 702  | 851  | 48 | 856  | 880  | 65  | 75    | 152 |
| 600              | 127 | 21 | 965  | 1930 | 6   | 1464 | 1477 | 1477  | 722 | 725   | 732 | 672 | 554 | 173 | 20 x 12 | 25 x 14 | 778  | 851  | 60 | 940  | 970  | 70  | 90    | 152 |
| 660              | 127 | 21 | 1035 | 2070 | 6   | 1581 | 1594 | 1645  | 781 | 797   | 791 | 730 | 613 | 187 | 20 x 12 | 25 x 14 | 842  | 921  | 60 | 1016 | 1068 | 75  | 90    | 152 |
| 730              | 127 | 21 | 1168 | 2337 | 6   | 1715 | 1727 | 1778  | 851 | 864   | 857 | 797 | 679 | 187 | 25 x 14 | 25 x 14 | 943  | 1054 | 60 | 1110 | 1135 | 90  | 90    | 152 |
| 807              | 127 | 21 | 1295 | 2591 | 6   | 1864 | 1877 | 1978  | 930 | 997   | 932 | 871 | 754 | 160 | 28 x 16 | 32 x 18 | 1038 | 1181 | 60 | 1162 | 1216 | 100 | 115   | 152 |

Klasse III

| AC1 | 001 | 285 | В |
|-----|-----|-----|---|
|     |     |     |   |

| AUSSEN-<br>GEHÄUSE | ВА  | вн | D    | G    | GA | н    | НҮ   | JA  | JB  | K   | КС  | KL  | KS      | М    | MA   | N  | Р    | SD    | U   |
|--------------------|-----|----|------|------|----|------|------|-----|-----|-----|-----|-----|---------|------|------|----|------|-------|-----|
| 182                | 44  | 21 | 330  | 660  | 3  | 483  | 552  | 272 | 241 | 222 | 133 | 75  | 14 x 9  | 245  | 292  | 19 | 386  | 45    | 102 |
| 200                | 57  | 21 | 368  | 737  | 3  | 543  | 588  | 289 | 272 | 246 | 191 | 75  | 14 x 9  | 270  | 330  | 25 | 403  | 45    | 102 |
| 222                | 57  | 21 | 406  | 813  | 5  | 584  | 632  | 313 | 292 | 267 | 203 | 100 | 14 x 9  | 298  | 368  | 25 | 459  | 50    | 102 |
| 245                | 64  | 21 | 432  | 864  | 5  | 641  | 676  | 335 | 321 | 292 | 191 | 89  | 14 x 9  | 327  | 368  | 29 | 470  | 50    | 102 |
| 270                | 64  | 21 | 483  | 965  | 5  | 692  | 727  | 365 | 346 | 318 | 203 | 87  | 18 x 11 | 359  | 419  | 29 | 497  | 60    | 102 |
| 300                | 76  | 21 | 533  | 1067 | 5  | 775  | 784  | 391 | 387 | 353 | 229 | 113 | 18 x 11 | 403  | 445  | 35 | 551  | 60    | 121 |
| 330                | 89  | 21 | 584  | 1168 | 5  | 857  | 892  | 435 | 429 | 387 | 273 | 116 | 18 x 11 | 441  | 495  | 41 | 600  | 65    | 121 |
| 365                | 89  | 21 | 648  | 1295 | 6  | 930  | 969  | 475 | 465 | 424 | 305 | 116 | 18 x 11 | 480  | 559  | 41 | 633  | 65    | 121 |
| 402                | 89  | 21 | 711  | 1422 | 6  | 1003 | 1092 | 530 | 502 | 461 | 343 | 140 | 20 x 12 | 530  | 622  | 41 | 715  | 70    | 121 |
| 445                | 102 | 21 | 787  | 1575 | 6  | 1108 | 1172 | 570 | 554 | 506 | 402 | 168 | 20 x 12 | 581  | 673  | 48 | 789  | 75    | 152 |
| 490                | 102 | 21 | 864  | 1727 | 6  | 1197 | 1311 | 627 | 598 | 551 | 446 | 168 | 20 x 12 | 645  | 749  | 48 | 857  | 75    | 152 |
| 542                | 102 | 21 | 965  | 1930 | 6  | 1299 | 1413 | 681 | 649 | 602 | 497 | 162 | 25 x 14 | 702  | 851  | 48 | 929  | 90    | 152 |
| 600                | 127 | 21 | 965  | 1930 | 8  | 1464 | 1530 | 744 | 732 | 672 | 554 | 175 | 28 x 16 | 778  | 851  | 60 | 1005 | 100   | 152 |
| 660                | 127 | 21 | 1035 | 2070 | 8  | 1581 | 1699 | 816 | 791 | 730 | 613 | 210 | 28 x 16 | 842  | 921  | 60 | 1122 | 100   | 152 |
| 730                | 127 | 21 | 1168 | 2337 | 8  | 1715 | 1832 | 878 | 857 | 797 | 679 | 221 | 25 x 14 | 943  | 1054 | 60 | 1195 | 90*   | 152 |
| 807                | 127 | 21 | 1295 | 2591 | 8  | 1864 | 1981 | 957 | 932 | 871 | 754 | 211 | 28 x 16 | 1038 | 1181 | 60 | 1265 | 100** | 152 |

## Horizontal, Bauform 3SM - Klasse I und II




| EN-<br>USE       |     |    |     |      |     |      | Н    | Υ     | J   | A     |     |     |     |     |     | K       | S       |     |     |     |      |      |
|------------------|-----|----|-----|------|-----|------|------|-------|-----|-------|-----|-----|-----|-----|-----|---------|---------|-----|-----|-----|------|------|
| AUSSEN<br>GEHÄUS | ВА  | вн | D   | G    | GA  | Н    | KLI  | KL II | KLI | KL II | JB  | K   | КВ  | КС  | KL  | KLI     | KL II   | M   | MA  | МВ  | МС   | ML   |
| 165              | 38  | 21 | 305 | 610  | 2,5 | 432  | 489  | 489   | 245 | 281   | 216 | 200 | 127 | 140 | 86  | 8 x 7   | 8 x 7   | 222 | 283 | 343 | 679  | 591  |
| 182              | 44  | 21 | 330 | 660  | 2,5 | 483  | 527  | 578   | 275 | 306   | 241 | 222 | 143 | 133 | 76  | 8 x 7   | 10 x 8  | 245 | 292 | 348 | 699  | 617  |
| 200              | 57  | 21 | 368 | 737  | 2,5 | 543  | 562  | 613   | 292 | 324   | 272 | 246 | 143 | 191 | 76  | 8 x 7   | 10 x 8  | 270 | 330 | 360 | 787  | 656  |
| 222              | 57  | 21 | 406 | 813  | 3   | 584  | 654  | 654   | 344 | 344   | 292 | 267 | 143 | 203 | 102 | 10 x 8  | 14 x 9  | 298 | 368 | 379 | 953  | 703  |
| 245              | 64  | 21 | 432 | 864  | 3   | 641  | 699  | 699   | 367 | 367   | 321 | 292 | 165 | 191 | 89  | 10 x 8  | 14 x 9  | 327 | 368 | 399 | 813  | 751  |
| 270              | 64  | 21 | 483 | 965  | 3   | 692  | 749  | 749   | 392 | 392   | 346 | 318 | 165 | 203 | 89  | 10 x 8  | 14 x 9  | 359 | 419 | 451 | 959  | 835  |
| 300              | 76  | 21 | 533 | 1067 | 3   | 775  | 806  | 832   | 421 | 425   | 387 | 353 | 222 | 229 | 114 | 14 x 9  | 14 x 9  | 403 | 445 | 480 | 1067 | 914  |
| 330              | 89  | 21 | 584 | 1168 | 3   | 857  | 864  | 889   | 449 | 454   | 429 | 387 | 222 | 273 | 114 | 14 x 9  | 14 x 9  | 441 | 495 | 537 | 1226 | 1010 |
| 365              | 89  | 21 | 648 | 1295 | 5   | 930  | 940  | 965   | 487 | 508   | 465 | 424 | 265 | 305 | 121 | 14 x 9  | 18 x 11 | 480 | 559 | 594 | 1353 | 1105 |
| 402              | 89  | 21 | 711 | 1422 | 5   | 1003 | 1038 | 1038  | 529 | 545   | 502 | 461 | 246 | 343 | 140 | 14 x 9  | 18 x 11 | 530 | 622 | 651 | 1257 | 1219 |
| 445              | 102 | 21 | 787 | 1575 | 5   | 1108 | 1118 | 1118  | 584 | 591   | 554 | 506 | 246 | 402 | 140 | 18 x 11 | 18 x 11 | 581 | 673 | 702 | 1353 | 1321 |
| 490              | 102 | 21 | 864 | 1727 | 5   | 1197 | 1207 | 1257  | 629 | 649   | 598 | 551 | 246 | 446 | 140 | 18 x 11 | 20 x 12 | 645 | 749 | 770 | 1588 | 1453 |
| 542              | 102 | 21 | 965 | 1930 | 5   | 1299 | 1308 | 1359  | 686 | 692   | 649 | 602 | 259 | 497 | 168 | 18 x 11 | 20 x 12 | 702 | 851 | 857 | 1689 | 1597 |
| 600              | 127 | 21 | 965 | 1930 | 6   | 1464 | 1477 | 1527  | 759 | 780   | 732 | 672 | 233 | 554 | 173 | 20 x 12 | 25 x 14 | 778 | 851 | 840 | 1797 | 1656 |

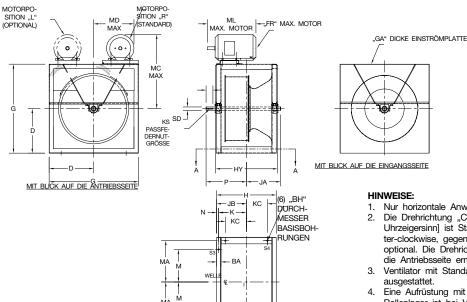
| AUSSENGEHÄUSE | MR          | N  |     | •     |      | 3     | S   | D     | т  | U   |
|---------------|-------------|----|-----|-------|------|-------|-----|-------|----|-----|
| AUSSENGERAUSE | MIK         | N  | KLI | KL II | KLI  | KL II | KLI | KL II |    | U   |
| 165           | 80 - 132M   | 16 | 346 | 354   | 213  | 221   | 25  | 30    | 25 | 38  |
| 182           | 90S - 132M  | 19 | 373 | 399   | 222  | 227   | 30  | 38    | 25 | 102 |
| 200           | 90L - 160M  | 25 | 416 | 416   | 318  | 318   | 30  | 38    | 25 | 102 |
| 222           | 90S - 160M  | 25 | 464 | 464   | 375  | 375   | 38  | 45    | 25 | 102 |
| 245           | 90S -160L   | 29 | 473 | 473   | 337  | 337   | 38  | 50    | 25 | 102 |
| 270           | 90S - 160L  | 29 | 499 | 499   | 376  | 376   | 38  | 50    | 25 | 102 |
| 300           | 90L - 180M  | 35 | 552 | 559   | 392  | 399   | 45  | 50    | 32 | 121 |
| 330           | 90L - 180L  | 41 | 581 | 603   | 452  | 459   | 45  | 50    | 32 | 121 |
| 365           | 112S - 200M | 41 | 626 | 654   | 480  | 486   | 50  | 60    | 32 | 121 |
| 402           | 112S - 200L | 41 | 687 | 716   | 592  | 598   | 50  | 60    | 38 | 121 |
| 445           | 112M - 200L | 48 | 743 | 770   | 703  | 673   | 60  | 65    | 38 | 152 |
| 490           | 132M - 200L | 48 | 787 | 814   | 768  | 795   | 60  | 70    | 38 | 152 |
| 542           | 132S - 225S | 48 | 891 | 886   | 887  | 883   | 65  | 75    | 38 | 152 |
| 600           | 132S - 225M | 60 | 956 | 983   | 1040 | 1032  | 70  | 90    | 38 | 152 |

### Horizontal, Bauform 3HS/3HA - Klasse I und II

### **Bauform 3HS**



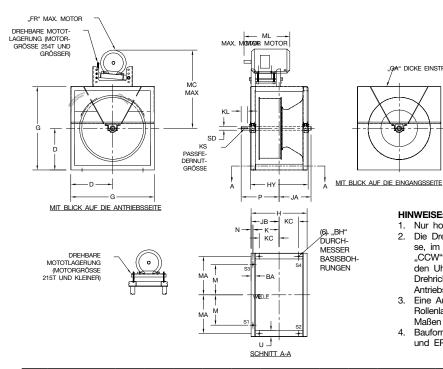
# Bauform 3HA




| AUSS | ENGEHÄUSE |     |    |     |      |      |     |      | Н    | Υ     | J   | A     |     |     | 1/0 |     | K       | S       |
|------|-----------|-----|----|-----|------|------|-----|------|------|-------|-----|-------|-----|-----|-----|-----|---------|---------|
| ЗНА  | 3HS       | ВА  | ВН | D   | FR   | G    | GA  | Н    | KLI  | KL II | KLI | KL II | JB  | K   | KC  | KL  | KL I    | KL II   |
| 122  | _         | 38  | 21 | 254 | 132M | 508  | 2,5 | 349  | 406  | 406   | 197 | 200   | 175 | 159 | 102 | 60  | 8 x 7   | 8 x 7   |
| 150  | _         | 38  | 21 | 279 | 132M | 559  | 2,5 | 400  | 457  | 457   | 222 | 226   | 200 | 184 | 127 | 86  | 8 x 7   | 8 x 7   |
| 165  | _         | 38  | 21 | 305 | 132M | 610  | 2,5 | 432  | 489  | 489   | 238 | 241   | 216 | 200 | 140 | 86  | 8 x 7   | 8 x 7   |
| 182  | 182       | 44  | 21 | 330 | 132M | 660  | 2,5 | 483  | 527  | 527   | 260 | 262   | 241 | 222 | 133 | 76  | 8 x 7   | 10 x 8  |
| 200  | 200       | 57  | 21 | 368 | 132M | 737  | 2,5 | 543  | 562  | 588   | 278 | 286   | 272 | 246 | 191 | 76  | 8 x 7   | 10 x 8  |
| 222  | 222       | 57  | 21 | 406 | 160L | 813  | 3   | 584  | 603  | 629   | 302 | 310   | 292 | 267 | 203 | 102 | 10 x 8  | 14 x 9  |
| 245  | 245       | 64  | 21 | 432 | 160L | 864  | 3   | 641  | 648  | 673   | 324 | 332   | 321 | 292 | 191 | 89  | 10 x 8  | 14 x 9  |
| 270  | 270       | 64  | 21 | 483 | 180L | 965  | 3   | 692  | 699  | 724   | 349 | 357   | 346 | 318 | 203 | 89  | 10 x 8  | 14 x 9  |
| 300  | 300       | 76  | 21 | 533 | 180L | 1067 | 3   | 775  | 781  | 781   | 386 | 389   | 387 | 353 | 229 | 114 | 14 x 9  | 14 x 9  |
| 330  | 330       | 89  | 21 | 584 | 200L | 1168 | 3   | 857  | 864  | 876   | 449 | 454   | 429 | 387 | 273 | 114 | 14 x 9  | 14 x 9  |
| 365  | 365       | 89  | 21 | 648 | 200L | 1295 | 5   | 930  | 940  | 965   | 459 | 471   | 465 | 424 | 305 | 121 | 14 x 9  | 18 x 11 |
| 402  | 402       | 89  | 21 | 711 | 200L | 1422 | 5   | 1003 | 1013 | 1038  | 497 | 508   | 502 | 461 | 343 | 140 | 14 x 9  | 18 x 11 |
| 445  | 445       | 102 | 21 | 787 | 225M | 1575 | 5   | 1108 | 1118 | 1118  | 548 | 552   | 554 | 506 | 402 | 140 | 18 x 11 | 18 x 11 |
| 490  | 490       | 102 | 21 | 864 | 225M | 1727 | 5   | 1197 | 1207 | 1207  | 592 | 598   | 598 | 551 | 446 | 140 | 18 x 11 | 20 x 12 |
| 542  | 542       | 102 | 21 | 965 | 225M | 1930 | 5   | 1299 | 1308 | 1359  | 643 | 662   | 649 | 602 | 497 | 168 | 18 x 11 | 20 x 12 |

SCHNITT A-A

### Horizontal, Bauform 3HS/3HA - Klasse I und II (Forts.)


### **Bauform 3HS**



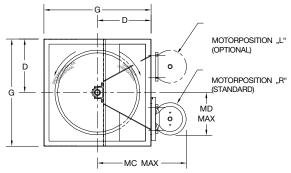
SCHNITT A-A

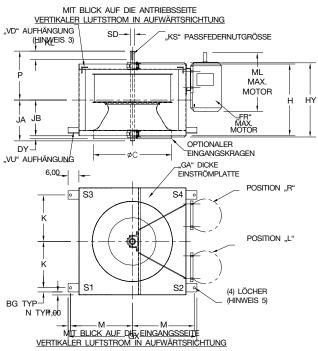
- Nur horizontale Anwendungen.
- Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counter-clockwise, gegen den Uhrzeigersinn] ist optional. Die Drehrichtung wird mit Blick auf die Antriebsseite ermittelt.
- Ventilator mit Standard-NEMA-Spannschlitten
- Eine Aufrüstung mit einem geteilten Rollenlager ist bei Ventilatoren mit "SD"-Maßen unter 36 mm nicht möglich.
- Bauform 3HS ist bei den Modellen EPF und EPQ verfügbar.

### **Bauform 3HA**



### HINWEISE:

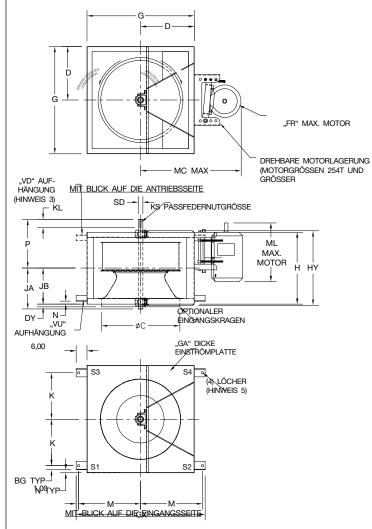

.QA" DICKE FINSTRÖMPI ATTE


- 1. Nur horizontale Anwendungen.
- Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counter-clockwise, gegen den Uhrzeigersinn] ist optional. Die Drehrichtung wird mit Blick auf die Antriebsseite ermittelt.
- Eine Aufrüstung mit einem geteilten Rollenlager ist bei Ventilatoren mit "SD"-Maßen unter 36 mm nicht möglich.
- Bauform 3HA ist bei den Modellen EPF und EPQ verfügbar.

| AUS | SENGEHÄUSE | М   | MA   | М    | С    | MD   | ML   | N  |     |       | S   | D     | U   |
|-----|------------|-----|------|------|------|------|------|----|-----|-------|-----|-------|-----|
| зна | 3HS        | IVI | IVIA | 3 НА | 3 HS | 3 HS | IVIL | IN | KLI | KL II | KLI | KL II | U   |
| 122 | _          | 171 | 232  | 681  |      |      | 514  | 16 | 283 | 283   | 25  | 30    | 38  |
| 150 | _          | 210 | 257  | 706  |      |      | 514  | 16 | 334 | 338   | 25  | 30    | 38  |
| 165 | _          | 222 | 283  | 732  |      |      | 514  | 16 | 349 | 349   | 25  | 30    | 38  |
| 182 | 182        | 245 | 292  | 759  | 699  | 330  | 514  | 19 | 359 | 383   | 30  | 38    | 102 |
| 200 | 200        | 270 | 330  | 797  | 737  | 368  | 514  | 25 | 376 | 400   | 30  | 38    | 102 |
| 222 | 222        | 298 | 368  | 1000 | 845  | 410  | 654  | 25 | 446 | 449   | 38  | 45    | 102 |
| 245 | 245        | 327 | 368  | 1026 | 870  | 435  | 654  | 29 | 456 | 459   | 38  | 50    | 102 |
| 270 | 270        | 359 | 419  | 1115 | 959  | 486  | 734  | 29 | 481 | 484   | 38  | 50    | 102 |
| 300 | 300        | 403 | 445  | 1165 | 1010 | 537  | 734  | 35 | 538 | 546   | 45  | 50    | 121 |
| 330 | 330        | 441 | 495  | 1330 | 1124 | 584  | 813  | 41 | 570 | 575   | 45  | 50    | 121 |
| 365 | 365        | 480 | 559  | 1394 | 1187 | 648  | 813  | 41 | 613 | 629   | 50  | 60    | 121 |
| 402 | 402        | 530 | 622  | 1461 | 1251 | 711  | 813  | 41 | 675 | 684   | 50  | 60    | 121 |
| 445 | 445        | 581 | 673  | 1584 | 1378 | 794  | 873  | 48 | 724 | 732   | 60  | 65    | 152 |
| 490 | 490        | 645 | 749  | 1661 | 1454 | 870  | 873  | 48 | 768 | 784   | 60  | 70    | 152 |
| 542 | 542        | 702 | 851  | 1762 | 1556 | 972  | 873  | 48 | 856 | 880   | 65  | 75    | 152 |

### Vertikal, Bauform 3VS/3VA - Klasse I und II

### **Bauform 3VS**



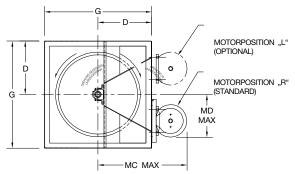


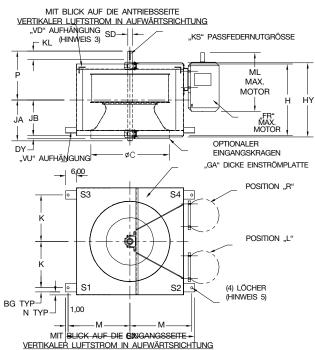

### HINWEISE:

- Nur vertikale Anwendungen.
- Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counter-clockwise, gegen den Uhrzeigersinn] ist optional. Die Drehrichtung wird mit Blick auf die Antriebsseite ermittelt.
- Vertikaler Luftstrom in Aufwärtsrichtung (VU) ist Standard. Vertikaler Luftstrom in Abwärtsrichtung (VD) erfordert an der Antriebsseite angebrachte Aufhängungen.
- Eine Aufrüstung mit einem geteilten Rollenlager ist bei vertikalen Ventilatoren nicht möglich.
- Die Größe der Löcher der Federaufhängungen entspricht dem Federtyp. Die Lochdurchmesser bei Verwendung einer Aufhängung anstatt eines Montagefußes sind wie folgt: Größe 402-542: 0,81
- Größe 182-365: 0;56 Ventilatoren mit Standard-NEMA-Motorspannschlitten ausgestattet.
- Bauform 3VS ist bei den Modellen EPF und EPQ verfügbar.

### **Bauform 3VA**




### HINWEISE:

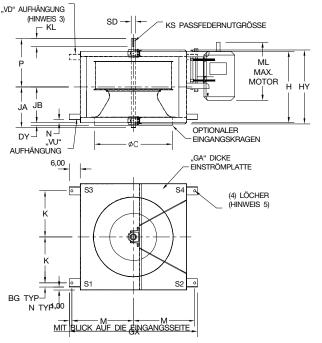

- Nur vertikale Anwendungen.
- Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counter-clockwise, gegen den Uhrzeigersinn] ist optional. Die Drehrichtung wird mit Blick auf die Antriebsseite ermittelt.
- Vertikaler Luftstrom in Aufwärtsrichtung (VU) ist Standard. Vertikaler Luftstrom in Abwärtsrichtung (VD) erfordert an der Antriebsseite angebrachte Aufhängungen.
- Eine Aufrüstung mit einem geteilten Rollenlager ist bei vertikalen Ventilatoren nicht möglich.
- Die Größe der Löcher der Federaufhängungen entspricht dem Federtyp. Die Lochdurchmesser bei Verwendung einer Aufhängung anstatt eines Montagefußes sind wie folgt: Größe 122-365: 0;56 Größe 402-542: 0,81
- Bauform 3VA ist bei den Modellen EPF und EPQ verfügbar.

| AUSS | SENGEHÄUSE | ВG | C    | D   | DY | FR   | G    | GA  | GX   | н    | Н    | Υ     | J    | A     | JB  | v   | KL  | K       | S       |
|------|------------|----|------|-----|----|------|------|-----|------|------|------|-------|------|-------|-----|-----|-----|---------|---------|
| 3VA  | 3VS        | ьц |      |     | זע | Гħ   | u    | GA  | GA   |      | KL I | KL II | KL I | KL II | JB  | Α.  | KL  | KLI     | KL II   |
| 122  | _          | 29 | 337  | 254 | 54 | 132M | 508  | 2,5 | 813  | 349  | 406  | 406   | 197  | 200   | 175 | 200 | 60  | 8 x 7   | 8 x 7   |
| 150  | -          | 29 | 411  | 279 | 54 | 132M | 559  | 2,5 | 864  | 400  | 457  | 457   | 222  | 226   | 200 | 226 | 86  | 8 x 7   | 8 x 7   |
| 165  | _          | 29 | 451  | 305 | 54 | 132M | 610  | 2,5 | 914  | 432  | 489  | 489   | 238  | 241   | 216 | 251 | 86  | 8 x 7   | 8 x 7   |
| 182  | 182        | 29 | 495  | 330 | 48 | 132M | 660  | 2,5 | 965  | 483  | 527  | 527   | 260  | 264   | 241 | 264 | 86  | 8 x 7   | 10 x 8  |
| 200  | 200        | 41 | 543  | 368 | 48 | 132M | 737  | 2,5 | 1041 | 543  | 562  | 588   | 278  | 287   | 272 | 289 | 94  | 8 x 7   | 10 x 8  |
| 222  | 222        | 41 | 603  | 406 | 48 | 160L | 813  | 3   | 1118 | 584  | 603  | 629   | 302  | 310   | 292 | 327 | 116 | 10 x 8  | 14 x 9  |
| 245  | 245        | 41 | 662  | 432 | 41 | 160L | 864  | 3   | 1168 | 641  | 648  | 673   | 324  | 332   | 321 | 353 | 103 | 10 x 8  | 14 x 9  |
| 270  | 270        | 41 | 724  | 483 | 41 | 180L | 965  | 3   | 1270 | 692  | 699  | 724   | 349  | 357   | 346 | 403 | 103 | 10 x 8  | 14 x 9  |
| 300  | 300        | 41 | 803  | 533 | 29 | 180L | 1067 | 3   | 1372 | 775  | 781  | 781   | 386  | 389   | 387 | 454 | 129 | 14 x 9  | 14 x 9  |
| 330  | 330        | 41 | 883  | 584 | 29 | 200L | 1168 | 3   | 1473 | 857  | 864  | 864   | 422  | 424   | 429 | 505 | 129 | 14 x 9  | 14 x 9  |
| 365  | 365        | 54 | 978  | 648 | 43 | 200L | 1295 | 5   | 1600 | 930  | 940  | 965   | 459  | 468   | 465 | 556 | 135 | 14 x 9  | 18 x 11 |
| 402  | 402        | 54 | 1078 | 711 | 43 | 200L | 1422 | 5   | 1727 | 1003 | 1013 | 1038  | 499  | 505   | 502 | 619 | 151 | 14 x 9  | 18 x 11 |
| 445  | 445        | 54 | 1191 | 787 | 30 | 225M | 1575 | 5   | 1880 | 1108 | 1118 | 1118  | 548  | 548   | 554 | 695 | 162 | 18 x 11 | 18 x 11 |
| 490  | 490        | 54 | 1311 | 864 | 30 | 225M | 1727 | 5   | 2032 | 1197 | 1207 | 1207  | 589  | 598   | 598 | 772 | 165 | 18 x 11 | 20 x 12 |
| 542  | 542        | 54 | 1451 | 965 | 56 | 225M | 1930 | 5   | 2235 | 1299 | 1308 | 1359  | 643  | 662   | 649 | 873 | 191 | 18 x 11 | 25 x 14 |

### Vertikal, Bauform 3VS/3VA - Klasse I und II (Forts.)

### **Bauform 3VS**



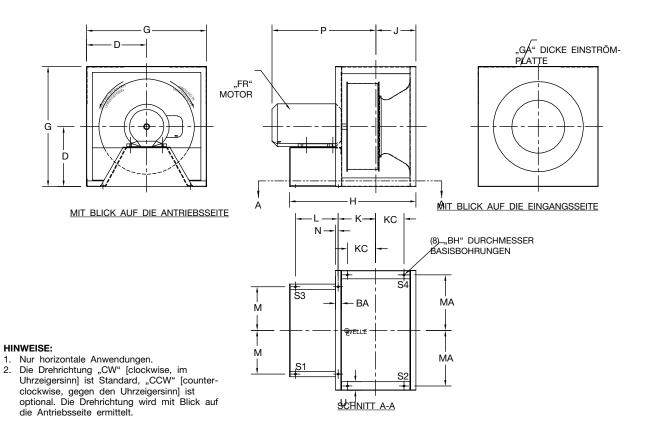



### HINWFISE:

- Nur vertikale Anwendungen.
- Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counter-clockwise, gegen den Uhrzeigersinn] ist optional. Die Drehrichtung wird mit Blick auf die Antriebsseite ermittelt
- Vertikaler Luftstrom in Aufwärtsrichtung (VU) ist Standard. Vertikaler Luftstrom in Abwärtsrichtung (VD) erfordert an der Antriebsseite angebrachte Aufhängungen.
- Eine Aufrüstung mit einem geteilten Rollenlager ist bei vertikalen Ventilatoren nicht möglich.
- Die Größe der Löcher der Federaufhängungen entspricht dem Federtyp. Die Lochdurchmesser bei Verwendung einer Aufhängung anstatt eines Montagefußes sind wie folgt: Größe 182-365: 0;56 Größe 402-542: 0.81
- Ventilatoren mit Standard-NEMA-Motorspannschlitten ausgestattet. Bauform 3VS ist bei den Modellen EPF und EPQ verfügbar.

### **Bauform 3VA**

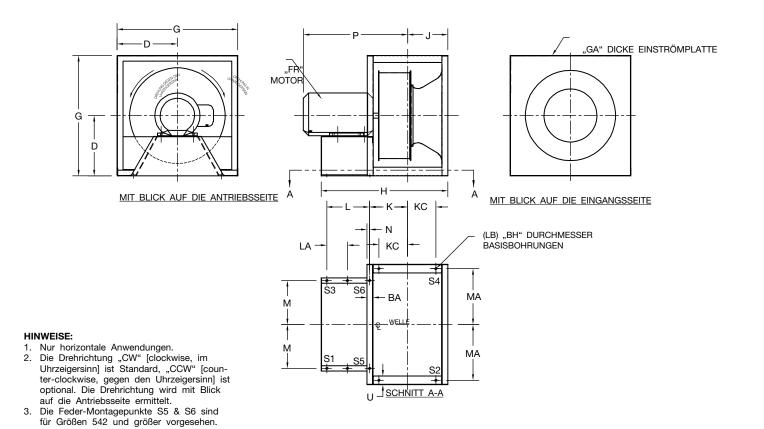





### HINWFISE:

- Nur vertikale Anwendungen.
- Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counter-clockwise, gegen den Uhrzeigersinn] ist optional. Die Drehrichtung wird mit Blick auf die Antriebsseite ermittelt.
- Vertikaler Luftstrom in Aufwärtsrichtung (VU) ist Standard. Vertikaler Luftstrom in Abwärtsrichtung (VD) erfordert an der Antriebsseite angebrachte Aufhängungen.
- 4. Eine Aufrüstung mit einem geteilten Rollenlager ist bei vertikalen Ventilatoren nicht möglich.
- Die Größe der Löcher der Federaufhängungen entspricht dem Federtyp. Die Lochdurchmesser bei Verwendung einer Aufhängung anstatt eines Montagefußes sind wie folgt:
  - Größe 122-365: 0:56 Größe 402-542: 0.81
- Bauform 3VA ist bei den Modellen EPF und EPQ verfügbar.

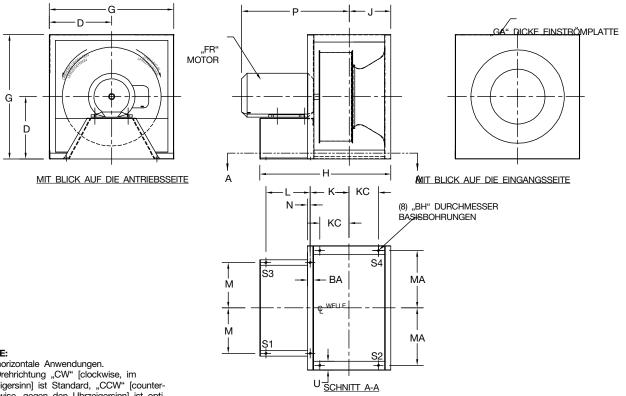
| AU  | SSENGEHÄUSE |      | M    | C    | MD   | IV   | L    |    |     |       | S   | D     |
|-----|-------------|------|------|------|------|------|------|----|-----|-------|-----|-------|
| 3VA | 3VS         | M    | 3 VA | 3 VS | 3 VS | 3 VA | 3 VS | N  | KLI | KL II | KLI | KL II |
| 122 | _           | 381  | 730  | _    | _    | 514  | _    | 25 | 283 | 283   | 25  | 30    |
| 150 | _           | 406  | 756  | —    | —    | 514  | —    | 25 | 334 | 334   | 25  | 30    |
| 165 | _           | 432  | 781  | _    | _    | 514  | _    | 25 | 349 | 349   | 25  | 30    |
| 182 | 182         | 457  | 806  | 660  | 334  | 514  | 413  | 25 | 368 | 391   | 30  | 38    |
| 200 | 200         | 495  | 845  | 743  | 368  | 514  | 514  | 38 | 394 | 416   | 30  | 38    |
| 222 | 222         | 533  | 973  | 781  | 406  | 654  | 514  | 38 | 461 | 464   | 38  | 45    |
| 245 | 245         | 559  | 998  | 806  | 432  | 654  | 514  | 38 | 470 | 473   | 38  | 50    |
| 270 | 270         | 610  | 1087 | 857  | 483  | 734  | 514  | 38 | 495 | 499   | 38  | 50    |
| 300 | 300         | 660  | 1138 | 972  | 537  | 734  | 654  | 38 | 552 | 560   | 45  | 50    |
| 330 | 330         | 711  | 1295 | 1022 | 588  | 813  | 654  | 38 | 583 | 589   | 45  | 50    |
| 365 | 365         | 775  | 1359 | 1086 | 651  | 813  | 654  | 38 | 627 | 643   | 50  | 60    |
| 402 | 402         | 838  | 1422 | 1149 | 715  | 813  | 654  | 38 | 684 | 695   | 50  | 60    |
| 445 | 445         | 914  | 1549 | 1264 | 791  | 873  | 734  | 38 | 746 | 754   | 60  | 65    |
| 490 | 490         | 991  | 1626 | 1340 | 867  | 873  | 734  | 38 | 794 | 810   | 65  | 70    |
| 542 | 542         | 1092 | 1727 | 1505 | 965  | 873  | 813  | 38 | 878 | 902   | 65  | 90    |


## Horizontal, Bauform 4 - Klasse I und II



### Klasse I und II, Größe 122 - 270

| ÷ !!!              |    |    |     |                                           |     |     |                     | Н                   |                   | J                  |                   | K                  | ŀ                 | (C                 |                   |     |     |    | PI                | Max.               |     |
|--------------------|----|----|-----|-------------------------------------------|-----|-----|---------------------|---------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|-----|-----|----|-------------------|--------------------|-----|
| AUSSEN-<br>GEHÄUSE | ва | вн | D   | FR                                        | G   | GA  | 50-77 %<br>Breite   | 78-105 %<br>Breite  | 50-77 %<br>Breite | 78-105 %<br>Breite | 50-77 %<br>Breite | 78-105 %<br>Breite | 50-77 %<br>Breite | 78-105 %<br>Breite | L                 | М   | MA  | N  | 50-77 %<br>Breite | 78-105 %<br>Breite | U   |
| 122                | 38 | 21 | 254 | 80<br>90S - 90L<br>112S - 112M            | 508 | 2,5 | 497<br>549<br>586   | 522<br>575<br>611   | 162               | 175                | 146               | 159                | 89                | 102                | 137<br>189<br>226 | 171 | 232 | 16 | 433<br>437<br>471 | 443<br>449<br>484  | 38  |
| 150                | 38 | 21 | 279 | 80<br>90S - 90L<br>112S - 112M            | 559 | 2,5 | 545<br>592<br>627   | 573<br>621<br>656   | 186               | 200                | 170               | 184                | 113               | 127                | 137<br>184<br>219 | 210 | 257 | 16 | 457<br>461<br>495 | 471<br>475<br>510  | 38  |
| 165                | 38 | 21 | 305 | 80<br>90S - 90L<br>112S - 112M            | 610 | 2,5 | 581<br>640<br>672   | 613<br>672<br>703   | 200               | 216                | 184               | 200                | 124               | 140                | 145               | 222 | 283 | 16 | 471<br>475<br>510 | 487<br>490<br>526  | 38  |
| 182                | 44 | 21 | 330 | 90S - 90L<br>112S - 112M<br>132S - 132M   | 660 | 2,5 | 700<br>732<br>776   | 738<br>770<br>814   | 222               | 241                | 203               | 222                | 114               | 133                | 222<br>254<br>298 | 245 | 292 | 19 | 490<br>526<br>611 | 522<br>557<br>643  | 102 |
| 200                | 57 | 21 |     | 90S - 90L<br>112S - 112M<br>132S - 132M   | 737 | 2,5 | 738<br>773<br>821   | 780<br>814<br>862   | 251               | 272                | 226               | 246                | 170               | 191                | 210<br>245<br>298 | 270 | 330 | 25 | 506<br>541<br>627 | 537<br>572<br>657  | 102 |
| 222                | 57 | 21 | 406 | 112S - 112M<br>132S - 132M<br>160M - 160L | 1   | 3   | 832<br>878<br>978   | 880<br>926<br>1026  | 268               | 292                | 243               | 267                | 179               | 203                | 268               | 298 | 368 | 25 | 559<br>645<br>768 | 610<br>695<br>819  | 102 |
| 245                | 64 | 21 |     | 112S - 112M<br>132S - 132M<br>160M - 160L | 864 | 3   | 878<br>922<br>1024  | 929<br>973<br>1075  | 295               | 321                | 267               | 292                | 165               | 191                | 264<br>308<br>410 | 327 | 368 | 29 | 579<br>665<br>789 | 705<br>715<br>838  | 102 |
| 270                | 64 | 21 |     | 132S - 132M<br>160M - 160L<br>180M - 180L | 965 | 3   | 959<br>1059<br>1103 | 254<br>1116<br>1161 | 318               | 346                | 289               | 318                | 175               | 203                | 300<br>400<br>445 | 359 | 419 | 29 | 687<br>811<br>875 | 734<br>857<br>921  | 102 |


### Horizontal, Bauform 4 - Klasse I und II

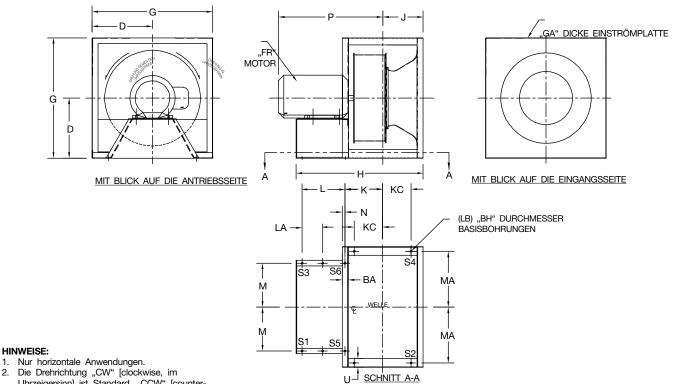


### Klasse I und II, Größe 300 - 660

| >                  |     |    |     |                                                          |      |    |                              | Н                            |                   | J                  |                  | K                  | K   | C                  |                          |                          |                   |     |     |    | P                            | Max.                         |     |
|--------------------|-----|----|-----|----------------------------------------------------------|------|----|------------------------------|------------------------------|-------------------|--------------------|------------------|--------------------|-----|--------------------|--------------------------|--------------------------|-------------------|-----|-----|----|------------------------------|------------------------------|-----|
| AUSSEN-<br>GEHÄUSE | ва  | вн | D   | FR                                                       | G    | GA | 50-77 %<br>Breite            | 78-105 %<br>Breite           | 50-77 %<br>Breite | 78-105 %<br>Breite | 50-77%<br>Breite | 78-105<br>% Breite |     | 78-105 %<br>Breite | L                        | LA                       | LB                | M   | MA  | N  | 50-77 %<br>Breite            | 78-105 %<br>Breite           | U   |
| 300                | 76  | 21 | 533 | 132S - 132M<br>160M - 160L                               |      | 3  | 1024<br>1125                 | 1087<br>1189                 | 356               | 387                | 321              | 353                | 197 | 229                | 295<br>397               | =                        | 8                 | 403 | 445 | 35 | 713<br>837                   | 760<br>884                   | 121 |
| 330                | 89  | 21 | 584 | 180M - 180L<br>160M - 160L<br>180M - 180L                | 1168 | 3  | 1167<br>1176<br>1221         | 1230<br>1246<br>1291         | 394               | 429                | 353              | 387                | 238 | 273                | 438<br>378<br>422        | _<br>_<br>_              | _                 | 441 | 495 | 41 | 900<br>862<br>926            | 948<br>911<br>975            | 121 |
| 365                | 89  | 21 | 648 | 200M - 200L<br>180M - 180L<br>200M - 200L<br>225S - 225M | 1295 | 5  | 1265<br>1280<br>1302<br>1319 | 1335<br>1356<br>1378<br>1395 | 427               | 465                | 386              | 424                | 267 | 305                | 233<br>414<br>437<br>454 | 233<br>—<br>—<br>—       | 10<br>8<br>8<br>8 | 480 | 559 | 41 | 989<br>960<br>1024<br>1068   | 1038<br>998<br>1062<br>1106  | 121 |
| 402                | 89  | 21 | 711 | 250M - 280S<br>180M - 180L<br>200M - 200L<br>225S - 225M | 1422 | 5  | 1378<br>1350<br>1381<br>1381 | 1454<br>1432<br>1464<br>1464 | 461               | 502                | 419              | 461                | 302 | 343                | 256<br>418<br>449<br>449 | 256<br>—<br>—<br>—       | 8                 | 530 | 622 | 41 | 1208<br>994<br>1057<br>1102  | 1246<br>1035<br>1099<br>1143 | 121 |
| 445                | 102 | 21 | 787 | 250M - 280S<br>200M - 200L<br>225S - 225M<br>250M - 280S | 1575 | 5  | 1181<br>1524<br>1553<br>1549 | 1518<br>1616<br>1645<br>1642 | 508               | 554                | 461              | 506                | 356 | 402                | 252<br>252<br>266<br>264 | 252<br>252<br>266<br>264 | 10<br>10<br>10    | 581 | 673 | 48 | 1242<br>1092<br>1137<br>1276 | 1283<br>1181<br>1226<br>1322 | 152 |
| 490                | 102 | 21 |     | 200M - 200L<br>225S - 225M<br>250M - 280S                |      | 5  | 1599<br>1627<br>1621         | 1699<br>1727<br>1721         | 548               | 598                | 500              | 551                | 395 | 446                | 248<br>263<br>260        | 248<br>263<br>260        | 10<br>10<br>10    | 645 | 749 | 48 | 1132<br>1176<br>1316         | 1219<br>1264<br>1367         | 152 |
| 542                | 102 | 21 | 965 | 225S - 225M<br>250M - 280S<br>280M                       | 1930 | 5  | 1716<br>1708<br>1794         | 1829<br>1821<br>1907         | 592               | 649                | 545              | 602                | 440 | 497                | _                        | 263<br>259<br>302        | 10                | 702 | 851 | 48 | 1221<br>1360<br>1526         | 1311<br>1418<br>1583         | 152 |
| 600                | 127 | 21 |     | 225S - 225M<br>250M - 280S<br>280M                       |      | 6  | 1849<br>1868<br>1918         | 1973<br>1992<br>2042         | 670               | 732                | 610              | 672                | 492 | 554                | 259<br>268<br>293        | 259<br>268<br>293        | 10<br>10<br>10    | 778 | 851 | 60 | 1275<br>1415<br>1580         | 1360<br>1477<br>1642         | 152 |
| 660                | 127 | 21 |     | 225S - 225M<br>250M - 280S<br>280M                       |      | 6  | 1940<br>1967<br>2037         | 2076<br>2103<br>2173         | 721               | 791                | 660              | 730                | 545 | 613                | 265                      | 246<br>265<br>300        | 10<br>10<br>10    | 842 | 921 | 60 | 1327<br>1467<br>1632         | 1427<br>1535<br>1700         | 152 |

# Horizontal, Bauform 4 - Klasse III




### HINWEISE:

- Nur horizontale Anwendungen.
   Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counter-clockwise, gegen den Uhrzeigersinn] ist opti-onal. Die Drehrichtung wird mit Blick auf die Antriebsseite ermittelt.

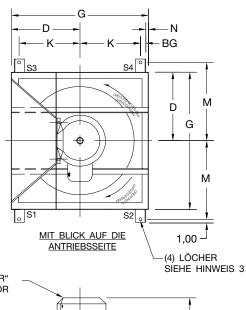
### Klasse III, Größe 182 - 330

| , W                | z w |     |             |             |      |     | Н                 |                    | J                 |                    | K                 |                    | KC                |                    |     |     |     |     | PI                | Max.               |          |
|--------------------|-----|-----|-------------|-------------|------|-----|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-----|-----|-----|-----|-------------------|--------------------|----------|
| AUSSEN-<br>GEHÄUSE | ВА  | вн  | D           | FR          | G    | GA  | 50-77 %<br>Breite | 78-105 %<br>Breite | L   | M   | MA  | N   | 50-77 %<br>Breite | 78-105 %<br>Breite | U        |
| ע ס                |     |     |             |             |      |     |                   |                    | breite            | breite             | breite            | breite             | breite            | breite             |     |     |     |     |                   |                    |          |
| ļ                  |     |     |             | 90S - 90L   |      |     | 686               | 722                |                   |                    |                   |                    |                   |                    | 207 |     |     |     | 492               | 511                | 」 ļ      |
| 182                | 44  | 21  | 330         | 112S - 112M | 660  | 3   | 718               | 754                | 222               | 241                | 203               | 222                | 114               | 133                | 238 | 245 | 292 | 19  | 527               | 546                | 102      |
|                    |     |     |             | 132S - 132M |      |     | 756               | 792                |                   |                    |                   |                    |                   |                    | 276 | L'  |     |     | 613               | 632                |          |
|                    |     |     |             | 90S - 90L   |      |     | 740               | 780                | 780               |                    |                   |                    |                   |                    | 210 | ]   |     |     | 508               | 529                | <u> </u> |
| 200                | 57  | 21  | 368         | 112S - 112M | 737  | 3   | 775               | 814                | 251               | 272                | 226               | 246                | 170               | 191                | 245 | 270 | 330 | 25  | 543               | 564                | 102      |
|                    |     |     | 132S - 132M |             |      | 803 | 843               |                    |                   |                    |                   |                    |                   | 273                |     |     |     | 629 | 649               |                    |          |
| 1                  |     |     |             | 112S - 112M |      |     | 827               | 873                |                   |                    |                   |                    |                   |                    | 262 | _   |     |     | 562               | 586                | ļ ļ      |
| 222                | 57  | 21  | 406         | 132S - 132M | 813  | 5   | 849               | 895                | 268               | 292                | 243               | 267                | 179               | 203                | 284 | 298 | 368 | 25  | 648               | 672                | 102      |
|                    |     |     |             | 160M - 160L |      |     | 951               | 997                |                   |                    |                   |                    |                   |                    | 386 |     |     |     | 772               | 795                |          |
|                    |     |     |             | 112S - 112M |      |     | 887               | 937                | 295               | 321                | 267               |                    |                   |                    | 272 |     | 368 | 29  | 583               | 608                | 102      |
| 245                | 64  | 21  | 432         | 132S - 132M | 864  | 5   | 903               | 953                |                   |                    |                   | 292                | 165               | 191                | 287 | 327 |     |     | 668               | 694                |          |
|                    |     |     |             | 160M - 160L |      |     | 998               | 1048               |                   |                    |                   |                    |                   |                    | 383 |     |     |     | 792               | 818                |          |
|                    |     |     |             | 132S - 132M |      |     | 954               | 1010               |                   |                    |                   |                    |                   |                    | 294 | _   |     |     | 691               | 719                |          |
| 270                | 64  | 21  | 483         | 160M - 160L | 965  | 5   | 1034              | 1089               | 318               | 346                | 289               | 318                | 175               | 203                | 373 | 359 | 419 | 29  | 814               | 843                | 102      |
|                    |     |     |             | 180M - 180L |      |     | 1078              | 1134               |                   |                    |                   |                    |                   |                    | 418 |     |     |     | 878               | 907                |          |
|                    |     |     |             | 132S - 132M |      |     | 1029              | 1091               |                   |                    |                   |                    |                   |                    | 298 | ļ   |     | 35  | 716               | 748                |          |
| 300                | 76  | 21  | 533         | 160M - 160L | 1067 | 5   | 1103              | 1165               | 356               | 387                | 321               | 353                | 197               | 229                | 373 | 403 | 445 |     | 840               | 871                | 121      |
| 1300               | 10  | 2 1 | 333         | 180M - 180L | 1007 | 3   | 1141              | 1203               | 330               | 307                | 321               | 333                | 197               | 229                | 411 | 403 | 443 | 33  | 903               | 935                | ] '      |
|                    |     |     |             | 200M - 200L |      |     | 1186              | 1248               |                   |                    |                   |                    |                   |                    | 456 |     |     |     | 967               | 998                |          |
|                    |     |     |             | 160M - 160L |      |     | 1141              | 1210               |                   |                    |                   |                    |                   |                    | 341 |     |     |     | 865               | 900                | T        |
| 330                | 89  | 21  | 584         | 180M - 180L | 1168 | 5   | 1180              | 1248               | 394               | 429                | 353               | 387                | 238               | 273                | 379 | 441 | 495 | 41  | 929               | 964                | 121      |
|                    |     |     |             | 200M - 200L |      |     | 1238              | 1307               |                   |                    |                   |                    |                   |                    | 438 |     |     |     | 992               | 1027               |          |

# Horizontal, Bauform 4 - Klasse III



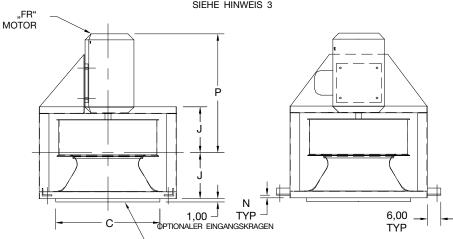
### HINWEISE:

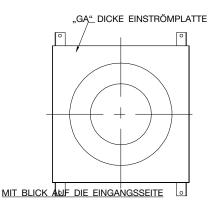

- Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counterclockwise, gegen den Uhrzeigersinn] ist optional. Die Drehrichtung wird mit Blick auf die Antriebsseite ermittelt.

  3. Die Feder-Montagepunkte S5 & S6 sind für
- Größen 445 und größer vorgesehen.

### Klasse III, Größe 365 - 660

| <b>- 111</b>       | ÷   |    |     |                                                          |      |    | Н                            |                              | J   |                    |     | K   | K                 | C                  |                          |                    |                   |     |     |    | Р                            | P Max.                       |     |
|--------------------|-----|----|-----|----------------------------------------------------------|------|----|------------------------------|------------------------------|-----|--------------------|-----|-----|-------------------|--------------------|--------------------------|--------------------|-------------------|-----|-----|----|------------------------------|------------------------------|-----|
| AUSSEN-<br>GEHÄUSE | ВА  | вн | D   | FR                                                       | G    | GA |                              | 78-105<br>% Breite           |     | 78-105 %<br>Breite |     |     | 50-77 %<br>Breite | 78-105 %<br>Breite | L                        | LA                 | LB                | М   | MA  | N  | 50-77 %<br>Breite            | 78-105 %<br>Breite           | U   |
| 365                | 89  | 21 | 648 | 180M - 180L<br>200M - 200L<br>225S - 225M<br>250M - 280S | 1295 | 6  | 1226<br>1254<br>1286<br>1362 | 1300<br>1329<br>1360<br>1437 | 427 | 465                | 386 | 500 | 267               | 305                | 359<br>387<br>419<br>248 | <br><br><br>248    | 8<br>8<br>8<br>10 | 480 | 559 | 41 | 965<br>1029<br>1073<br>1213  | 1002<br>1065<br>1110<br>1249 | 121 |
| 402                | 89  | 21 | 711 | 180M - 180L<br>200M - 200L<br>225S - 225M<br>250M - 280S | 1422 | 6  | 1334<br>1365<br>1353<br>1429 | 1415<br>1446<br>1434<br>1510 | 461 | 502                | 419 | 461 | 302               | 343                | 400<br>432<br>419<br>248 | _<br>_<br>_<br>248 | 8<br>8<br>8       | 530 | 622 | 41 | 998<br>1062<br>1106<br>1246  | 1038<br>1102<br>1146<br>1286 | 121 |
| 445                | 102 | 21 |     | 225S - 225M<br>250M - 280S<br>280M                       | 1575 | 6  | 1429<br>1515<br>1610         | 1519<br>1605<br>1700         | 508 | 554                | 461 | 506 | 356               | 402                | 406<br>246<br>294        | 246<br>294         | 8<br>10<br>10     | 581 | 673 | 48 | 1097<br>1281<br>1446         | 1141<br>1326<br>1491         | 152 |
| 490                | 102 | 21 | 864 | 200M - 200L<br>225S - 225M<br>250M - 280S<br>280M        | 1727 | 6  | 1526<br>1535<br>1561<br>1681 | 1624<br>1633<br>1659<br>1780 | 548 | 598                | 500 | 551 | 395               | 446                | 422<br>432<br>457<br>289 | _<br>_<br>_<br>289 | 8<br>8<br>8<br>10 | 645 | 749 | 48 | 1137<br>1181<br>1321<br>1486 | 1186<br>1230<br>1370<br>1535 | 152 |
| 542                | 102 | 21 | 965 | 225S - 225M<br>250M - 280S<br>280M                       | 1930 | 6  | 1614<br>1662<br>1756         | 1726<br>1773<br>1867         | 592 | 649                | 545 | 602 | 440               | 497                | 422<br>235<br>282        | —<br>235<br>282    | 8                 | 702 | 851 | 48 | 1226<br>1365<br>1530         | 1281<br>1421<br>1586         | 152 |
| 600                | 127 | 21 | 965 | 280M                                                     | 1930 | 8  | 1818<br>1811<br>1881         | 1940<br>1934<br>2004         | 670 | 732                | 610 | 672 | 492               | 554                | 239<br>274               | 242<br>239<br>274  |                   | 778 | 851 | 60 | 1280<br>1419<br>1584         | 1341<br>1481<br>1646         | 152 |
| 660                | 127 | 21 |     | 225S - 225M<br>250M - 280S<br>280M                       | 2070 | 8  | 1983<br>1973<br>1942         | 2118<br>2108<br>2153         | 721 | 791                | 660 | 730 | 545               | 613                | 267                      | 272<br>267<br>290  | 10<br>10<br>10    | 842 | 921 | 60 | 1334<br>1473<br>1638         | 1408<br>1540<br>1705         | 152 |


### Vertikal, Bauform 4V - Klasse I und II




### HINWEISE:

- Nur vertikale Anwendungen.
   Die Drehrichtung "CW" [clockwise, im Uhrzeigersinn] ist Standard, "CCW" [counterclockwise, gegen den Uhrzeigersinn] ist optional. Die Drehrichtung wird mit Blick auf die Antichbereite ermittelt Antriebsseite ermittelt.
- 3. Die Größe der Löcher der Federaufhängungen entspricht dem Federtyp. Die Lochdurchmesser bei Verwendung einer Aufhängung anstatt eines Montagefußes sind wie folgt: Größe 182–365: 0,56

Größe 402-490: 0,81





| AUSSEN-   |    |      |     |             |      |     | ,       | J       |     |     |    | P MAX.  |         |
|-----------|----|------|-----|-------------|------|-----|---------|---------|-----|-----|----|---------|---------|
| GEHÄUSE   | BG | С    | D   | FR          | G    | GA  | 50-70 % | 71-105% | K   | M   | N  | 50-70 % | 71-105% |
| G21111002 |    |      |     |             |      |     | BREITE  | BREITE  |     |     |    | BREITE  | BREITE  |
| 182       | 41 | 495  | 330 | 90S - 132M  | 660  | 2,5 | 222     | 241     | 264 | 457 | 25 | 638     | 660     |
| 200       | 41 | 543  | 368 | 90S - 132M  | 737  | 2,5 | 251     | 272     | 289 | 495 | 38 | 651     | 679     |
| 222       | 41 | 603  | 406 | 112S - 160L | 813  | 3   | 268     | 292     | 327 | 533 | 38 | 810     | 838     |
| 245       | 41 | 662  | 432 | 112S - 160L | 864  | 3   | 295     | 321     | 353 | 559 | 38 | 829     | 857     |
| 270       | 41 | 724  | 483 | 132S - 180L | 965  | 3   | 318     | 346     | 403 | 610 | 38 | 911     | 940     |
| 300       | 41 | 803  | 533 | 132S - 180L | 1067 | 3   | 356     | 387     | 454 | 660 | 38 | 937     | 965     |
| 330       | 41 | 883  | 584 | 160M - 200L | 1168 | 3   | 394     | 429     | 505 | 711 | 38 | 1022    | 1070    |
| 365       | 54 | 978  | 648 | 180M - 280S | 1295 | 5   | 427     | 465     | 556 | 775 | 38 | 1232    | 1302    |
| 402       | 54 | 1078 | 711 | 180M - 280S | 1422 | 5   | 461     | 502     | 619 | 838 | 38 | 1267    | 1337    |
| 445       | 54 | 1191 | 787 | 200M - 280S | 1575 | 5   | 508     | 554     | 695 | 914 | 38 | 1343    | 1394    |
| 490       | 54 | 1311 | 864 | 200M - 280S | 1727 | 5   | 548     | 598     | 772 | 991 | 38 | 1376    | 1435    |

Die Ventilatoren entsprechen Modell EPF, EPFN, EPQ oder EPQN, Einbau-Plenum-Radialventilatoren, wie das Produkt von Twin City Fan & Blower, Minneapolis, Minnesota.

Die Ventilatoren werden für den im gesamten Betriebsbereich hinweg rapide ansteigenden Druck ausgelegt, der auch über den maximalen Wirkungsgrad hinaus steigt, um einen ruhigen und stabilen Betrieb sicherzustellen. Die Auslegung erfolgt mit genügendem Abstand vom Abriss-Punkt. Die Ventilatoren sind mit hohen Sicherheiten konstruiert, in der ausgewählten Leistungskurve eingeordnet und werden im normalen Auswahlbereich einen Spitzenwirkungsgrad erreichen. Alle Ventilatoren sind in der Lage , über die Bereiche der Druckklassen hinaus zu arbeiten, wie in der AMCA-Norm 2408-69 spezifiziert.

**LEISTUNG** — Die Nennleistungen entsprechen AMCA-Norm 205 (Ventilator-Effizienzklasse), 211 (Luftleistung) und 311 (Schallleistung). Die Ventilatoren sind gemäß ANSI/AMCA-Norm 210 (Luftleistung) und 300 (Schallleistung) in einem von der AMCA akkreditierten Labor geprüft. Die Ventilatoren sind für das Tragen des AMCA-Siegels "certified ratings" [zertifizierte Bemessungsdaten] sowohl für die Schall- und Luftleistung als auch für die Ventilator-Effizienzklasse 8FEG) lizenziert. Ventilatoren der Bauform 3 werden mit Welle, Lagern und Tragstab im Eingang geprüft und bewertet. Die Schallzertifizierung gilt für den Schallleistungspegel am Eingang und Ausgang.

Die Ventilatoren werden für den im gesamten Betriebsbereich hinweg rapide ansteigenden Druck ausgelegt, der auch über den maximalen Wirkungsgrad hinaus steigt, um einen ruhigen und stabilen Betrieb sicherzustellen. Die Auslegung erfolgt mit genügendem Abstand vom Abriss-Punkt. Die Ventilatoren sind mit hohen Sicherheiten konstruiert, in der ausgewählten Leistungskurve eingeordnet und werden im normalen Auswahlbereich einen Spitzenwirkungsgrad erreichen. Alle Ventilatoren sind in der Lage , über die Bereiche der Druckklassen hinaus zu arbeiten, wie in der AMCA-Norm 99 spezifiziert.

**BAUWEISE** — Die Lüfter haben eine Ausführung ohne Spiralgehäuse und verfügen über ein überlastgeschütztes Laufrad mit rückwärts geneigten, aerodynamisch geformten Hohlschaufeln, eine solide Einströmplatte aus verstärktem Stahl sowie Rahmen, Welle und Lager aus Formstahl.

**RAHMEN UND EINSTRÖMPLATTE** — Die Einströmplatten sind in einer soliden Bauweise aus verstärktem Stahl ausgeführt. Die Einströmplatte beinhaltet eine ausbaubare, gedrückte Einströmdüse, die einen gleichmäßigen Luftstrom in den Eingangs-Haltering des Ventilatorlaufrads gewährleistet. Eine quadratische, geformte Lippe, die zum Anbringen eines Manschettenverbinders geeignet ist, umgibt die Einheit.

**LAUFRAD** — Die Laufräder verfügen über einen gedrückten, nicht konischen Schaufel-Haltering an der Eingangsseite, um höhere Wirkungsgrade über den Leistungsbereich des Ventilators zu ermöglichen. Die Größen 245 und kleiner haben hohlprofilförmige Schaufeln aus extrudiertem Aluminium. Die Größen 270 und größer haben gegossene hohlprofilförmige Stahlschaufeln und können optional mit Schaufeln aus extrudiertem Aluminium ausgestattet werden. Alle Laufräder bei Ventilatoren mit Direktantrieb der Bauform 4 verfügen über aerodynamisch geformte Aluminium-Strangpress-Schaufeln. Sämtliche Hohlschaufellaufräder sind durchgehend an den Ecken verschweißt. EPF- und EPFN-Laufräder haben neun Schaufeln für einen hohen Effizienzgrad. EPQ- und EPQN-Laufräder haben zwölf Schaufeln für eine bessere Schallqualität. Alle Laufräder sind mithilfe von elektronischen Auswuchtungsmaschinen statisch und dynamisch präzise auf die Wuchtgüte G6,3 (3,8 mm/s effektiv) gewuchtet.

**WELLE** — Die Wellen werden aus warmgewalztem Stahl der Güteklassen AlSI 1040 oder 1045 gefertigt, akkurat gedreht, geschliffen und poliert sowie mit einem Lehrring justiert, um ein erhöhtes Maß an Genauigkeit zu erzielen Die Wellen müssen in ihrer Größe auf die erste kritische Drehzahl von mindestens 1,43 Mal der maximalen Drehzahl ausgerichtet sein. Alle Wellen müssen nach dem Schneiden der Passfedernuten mittels einer Messuhr ausgerichtet werden und nach Erfordernis gerichtet werden.

**VENTILATOR-LAGER** — Bei den Lagern muss es sich um schwerlastfähige, mit Schmiermittel geschmierte, Kugel- oder am Adapter montierte Walzlager, selbst-anpassend, Typ Lagerbock, handeln und diese müssen für eine durchschnittliche Mindestlebensdauer der Lager L-10 von über 40.000 Stunden bei maximaler Ventilatordrehzahl ausgewählt werden. Alle Lager müssen mit Schmiernippel ausgestattet sein und, wo erforderlich, mit verlängerten Schmierleitungen für einfachen Zugang zur Schmierung.

**ANTRIEB** — Die Lager des Motors müssen aus Gusseisen gefertigt sein, einen verstellbaren Abstand bei den Anwendungen mit 7,5 kW und weniger sowie einen festen Abstand bei 11 kW und größer aufweisen. Die Antriebe und Riemen sind auf 150 % der erforderlichen Nennleistung des Motors auszulegen.

**OBERFLÄCHENBEHANDLUNG UND BESCHICHTUNG** — Die gesamte Ventilatorbauform, ausschließlich der Welle, muss gründlich entfettet und entgratet werden, ehe ein Rostschutzmittel aufgetragen werden kann. Nachdem der Ventilator komplett zusammengebaut ist, ist eine Oberflächenbeschichtung über die gesamte Bauform hinweg aufzutragen. Die Ventilatorwelle ist mit einem erdölbasierten Rostschutzmittel zu bestreichen. Aluminumkomponenten sind unlackiert.

**ZUBEHÖR** — Bei entsprechender Spezifikation sind Zubehörteile von Twin City Fan & Blower bereitzustellen, um die Verantwortung hinsichtlich der Lieferung aus einer Quelle zu erfüllen.

**DRALLREGLER** — Bei entsprechender Spezifikation müssen die Drallregler vom internen "verschachtelten" Typ sein. Jede Baugruppe muss bei Größe 245 und größer über elf Schaufeln verfügen und bei Größe 182 bis 222 über acht Schaufeln. Jede Schaufelbaugruppe muss komplett mit Zahnsegment und Hebel sein, geeignet für manuellen oder automatischen Betrieb. Die Bauweise muss solide sein und ein ausgekragtes Desing haben. Die Schaufeln sind mit einem hochwertigen feuchtigkeitsbeständigen Schmiermittel auf Lebensdauer geschmiert.

**WERKSSEITIGE FUNKTIONSPRÜFUNG** — Vor der Lieferung werden alle Ventilatoren komplett montiert und durchlaufen einen Testlauf als Einheit mit der vorgegebenen Betriebsdrehzahl oder der für den jeweiligen Typ zulässigen maximalen Drehzahl. Die maximalen Schwingungswerte müssen innerhalb der Grenzwerte gemäß ANSI/AMCA 204 Wuchtgüte der Stufe G6.3 (3,8 mm/s rms) liegen. Die Messwerte der Wuchtung werden über elektronische Messgeräte in axialer, vertikaler und horizontaler Richtung für jedes der Lager abgenommen. Es müssen Aufzeichnungen geführt und eine schriftliche Kopie auf Anfrage zur Verfügung gestellt werden.

**GARANTIE** — Der Hersteller garantiert, dass die Ausführung und das Material seiner Ventilatoren Modell EPF, EPFN, EPQ und EPQN mindestens zwölf (12) Monate ab Inbetriebnahme bzw. achtzehn (18) Monate ab Lieferung betriebsbereit sind je nachdem, welches Datum zuerst gegeben ist.

# OINDUSTRIELLER PROZESS UND KOMMERZIELLE LÜFTUNGSSYSTEME

RADIALVENTILATOR I VERSORGUNGSSETS I PLENUM-VENTILATOREN & EINBAU-VENTILATOREN
INLINE-RADIALVENTILATOREN I DIAGONALVENTILATOREN I AXIAL-ROHR-VENTILATOREN & AXIALVENTILATOREN MIT LEITSCHAUFELN
PROPELLER-WANDVENTILATOREN I PROPELLER-DECKENVENTILATOREN I DECKEN- & WAND-FLIEHKRAFTABZUGSANLAGEN
DECKENVENTILATOREN I SCHWERKRAFTLÜFTER I KANALGEBLÄSE I VENTILATOREN MIT RADIALSCHAUFELN
RADIALLÜFTER HOCHEFFIZIENTE INDUSTRIELÜFTER I DRUCKGEBLÄSE I ABZUGSLÜFTER FÜR LABORE I ZULUFTLÜFTER MIT FILTER
TRAGBARE VENTILATOREN I GLASFASERLÜFTER I KUNDENSPEZIFISCHE VENTILATOREN



# TWIN CITY FAN & BLOWER WWW.TCF.COM

5959 TRENTON LANE N | MINNEAPOLIS, MN 55442 | TELEFON: +1 763-551-7600 | FAX: +1 763-551-7601